conda create -n cone python=3.9 -y && conda activate cone
# Upgrade pip
pip install pip setuptools -U
# Install CUDA enabled packages for CUDA 11.8 (adjust to your system accordingly)
pip install torch==2.1.0 --index-url https://download.pytorch.org/whl/cu118
pip install torch_geometric==2.4.0 torch_cluster==1.6.3 -f https://data.pyg.org/whl/torch-2.1.0+cu118.html
# Install CONE along with its requirements (in editable mode)
pip install -e .
# Optional steps
pip install -r requirements.txt # install packages with pinned versioned
conda clean --all -y # clean up conda environment
Run CONE embedding training for PINPPI
network, using GTEx tissue expressed
genes as contexts:
python main.py network=pinppi context=tissue_gtex_expr
After the training is completed, the results can be found under the dump/
directory in the run directory. By default, this will be
outputs/cone-pinppi-tissue_gtex_expr-default/dump
.
Run the DisGeNET evaluation on the generated embeddings:
python evaluate_disgenet.py --mode cone --emb_dir outputs/cone-pinppi-tissue_gtex_expr-default/dump/
The results will be saved to results/cone-pinppi-tissue_gtex_expr-default-disgenet.csv
Run the DisGeNET evaluation on the generated embeddings:
python evaluate_ibd_ra.py --mode cone --subset_pinnacle_genes \
--emb_dir outputs/cone-pinppi-celltype_pinnacle-default/dump/
NOTE: must use the PINNACLE cell type context specific embeddings when
--subset_pinnacle_genes
is set (reproducing the setting from the original
PINNACLE paper).
The results will be saved to results/cone-pinppi-celltype_pinnacle-default-pinnacle_drug_targets.csv
@article{liu2023cone,
title={CONE: COntext-specific Network Embedding via Contextualized Graph Attention},
author={Liu, Renming and Yuan, Hao and Johnson, Kayla A and Krishnan, Arjun},
journal={bioRxiv},
pages={2023--10},
year={2023},
publisher={Cold Spring Harbor Laboratory}
}