Skip to content

Commit

Permalink
Merge branch 'kubeedge:main' into main
Browse files Browse the repository at this point in the history
  • Loading branch information
Frank-lilinjie authored Oct 22, 2024
2 parents de4b244 + a1fbc04 commit f87b916
Show file tree
Hide file tree
Showing 2 changed files with 45 additions and 30 deletions.
8 changes: 7 additions & 1 deletion .github/workflows/main.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -31,5 +31,11 @@ jobs:
python -m pip install ${{github.workspace}}/examples/resources/third_party/*
python -m pip install -r ${{github.workspace}}/requirements.txt
- name: Analysing code of core with pylint
# `--max-positional-arguments=10` is set for Python 3.9 to avoid `R0917: too-many-positional-arguments`.
# See details at https://github.com/kubeedge/ianvs/issues/157
run: |
pylint '${{github.workspace}}/core'
if [ "${{ matrix.python-version }}" = "3.9" ]; then
pylint --max-positional-arguments=10 '${{github.workspace}}/core'
else
pylint '${{github.workspace}}/core'
fi
67 changes: 38 additions & 29 deletions core/storymanager/rank/rank.py
Original file line number Diff line number Diff line change
Expand Up @@ -141,42 +141,49 @@ def _sort_all_df(self, all_df, all_metric_names):

def _get_all(self, test_cases, test_results) -> pd.DataFrame:
all_df = pd.DataFrame(columns=self.all_df_header)

for i, test_case in enumerate(test_cases):
all_df.loc[i] = [np.NAN for i in range(len(self.all_df_header))]
# fill name column of algorithm
algorithm = test_case.algorithm
all_df.loc[i][0] = algorithm.name
# fill metric columns of algorithm
for metric_name in test_results[test_case.id][0]:
all_df.loc[i][metric_name] = test_results[test_case.id][0].get(metric_name)
test_result = test_results[test_case.id][0]

# file paradigm column of algorithm
all_df.loc[i]["paradigm"] = algorithm.paradigm_type
# add algorithm, paradigm, time, url of algorithm
row_data = {
"algorithm": algorithm.name,
"paradigm": algorithm.paradigm_type,
"time": test_results[test_case.id][1],
"url": test_case.output_dir
}

# fill module columns of algorithm
for module_type, module in algorithm.modules.items():
all_df.loc[i][module_type] = module.name
# add metric of algorithm
row_data.update(test_result)

# fill hyperparameters columns of algorithm modules
hps = self._get_algorithm_hyperparameters(algorithm)
# add module of algorithm
row_data.update({
module_type: module.name
for module_type, module in algorithm.modules.items()
})

# pylint: disable=C0103
for k, v in hps.items():
all_df.loc[i][k] = v
# fill time and output dir of testcase
all_df.loc[i][-2:] = [test_results[test_case.id][1], test_case.output_dir]
# add hyperparameters of algorithm modules
row_data.update(self._get_algorithm_hyperparameters(algorithm))

if utils.is_local_file(self.all_rank_file):
old_df = pd.read_csv(self.all_rank_file, delim_whitespace=True, index_col=0)
all_df = all_df.append(old_df)
# fill data
all_df.loc[i] = row_data

return self._sort_all_df(all_df, self._get_all_metric_names(test_results))
new_df = self._concat_existing_data(all_df)

return self._sort_all_df(new_df, self._get_all_metric_names(test_results))

def _concat_existing_data(self, new_df):
if utils.is_local_file(self.all_rank_file):
old_df = pd.read_csv(self.all_rank_file, index_col=0)
new_df = pd.concat([old_df, new_df])
return new_df

def _save_all(self):
# pylint: disable=E1101
all_df = copy.deepcopy(self.all_df)
all_df.index = pd.np.arange(1, len(all_df) + 1)
all_df.to_csv(self.all_rank_file, index_label="rank", encoding="utf-8", sep=" ")
all_df.index = np.arange(1, len(all_df) + 1)
all_df.to_csv(self.all_rank_file, index_label="rank", encoding="utf-8")

def _get_selected(self, test_cases, test_results) -> pd.DataFrame:
module_types = self.selected_dataitem.get("modules")
Expand Down Expand Up @@ -205,8 +212,8 @@ def _get_selected(self, test_cases, test_results) -> pd.DataFrame:
def _save_selected(self, test_cases, test_results):
# pylint: disable=E1101
selected_df = self._get_selected(test_cases, test_results)
selected_df.index = pd.np.arange(1, len(selected_df) + 1)
selected_df.to_csv(self.selected_rank_file, index_label="rank", encoding="utf-8", sep=" ")
selected_df.index = np.arange(1, len(selected_df) + 1)
selected_df.to_csv(self.selected_rank_file, index_label="rank", encoding="utf-8")

def _draw_pictures(self, test_cases, test_results):
# pylint: disable=E1101
Expand All @@ -222,8 +229,11 @@ def _prepare(self, test_cases, test_results, output_dir):
all_metric_names = self._get_all_metric_names(test_results)
all_hps_names = self._get_all_hps_names(test_cases)
all_module_types = self._get_all_module_types(test_cases)
self.all_df_header = ["algorithm", *all_metric_names, "paradigm",
*all_module_types, *all_hps_names, "time", "url"]
self.all_df_header = [
"algorithm", *all_metric_names,
"paradigm", *all_module_types,
*all_hps_names, "time", "url"
]

rank_output_dir = os.path.join(output_dir, "rank")
if not utils.is_local_dir(rank_output_dir):
Expand All @@ -246,7 +256,6 @@ def save(self, test_cases, test_results, output_dir):
output_dir: string
"""

self._prepare(test_cases, test_results, output_dir)

if self.save_mode == "selected_and_all":
Expand Down

0 comments on commit f87b916

Please sign in to comment.