Skip to content

Commit

Permalink
a tiny start on the converse
Browse files Browse the repository at this point in the history
  • Loading branch information
jcommelin committed Jul 14, 2023
1 parent d218802 commit d530520
Showing 1 changed file with 48 additions and 0 deletions.
48 changes: 48 additions & 0 deletions src/condensed/exact.lean
Original file line number Diff line number Diff line change
Expand Up @@ -138,6 +138,7 @@ instance : has_zero_morphisms (CompHausFiltPseuNormGrp₁.{u}) :=
{ has_zero := λ M₁ M₂, ⟨0⟩,
comp_zero' := λ _ _ f _, rfl,
zero_comp' := λ _ _ _ f, by { ext, exact f.map_zero } }

variables {A B C : CompHausFiltPseuNormGrp₁.{u}}

structure strongly_exact (f : A ⟶ B) (g : B ⟶ C) (r : ℝ≥0 → ℝ≥0) : Prop :=
Expand Down Expand Up @@ -699,6 +700,53 @@ begin
end
.

lemma strongly_exact_of_exact_aux {A B C : CompHausFiltPseuNormGrp₁.{u}}
(f : A ⟶ B) (g : B ⟶ C) (hfg : exact (to_Condensed.map f) (to_Condensed.map g)) (c : ℝ≥0) :
∃ c', g ⁻¹' {0} ∩ (filtration B c) ⊆ f '' (filtration A c') :=
begin
sorry
end

-- move this
@[simp]
lemma _root_.Ab.ulift.map_eq_zero_iff {A B : Ab} (f : A ⟶ B) :
(Ab.ulift.{v}).map f = 0 ↔ f = 0 :=
begin
split, swap, { rintro rfl, refl },
intro h,
ext x,
have := congr_hom h ⟨x⟩,
exact congr_arg ulift.down this
end

lemma exact_iff_strongly_exact {A B C : CompHausFiltPseuNormGrp₁.{u}}
(f : A ⟶ B) (g : B ⟶ C) :
exact (to_Condensed.map f) (to_Condensed.map g) ↔
∃ r, strongly_exact f g r :=
begin
split, swap,
{ rintro ⟨r, hfg⟩, exact exact_of_strongly_exact f g r hfg },
intro hfg,
have : ∀ c : ℝ≥0, ∃ c', g ⁻¹' {0} ∩ (filtration B c) ⊆ f '' (filtration A c'),
from strongly_exact_of_exact_aux f g hfg,
choose r' h' using this,
refine ⟨r' ⊔ id, ⟨_, _, le_sup_right⟩⟩,
{ rw exact_iff_ExtrDisc at hfg,
haveI : projective (Profinite.of punit.{u+1}) := sorry,
have H := (hfg (ExtrDisc.of (Profinite.of $ punit))).w,
dsimp at H,
rw [← functor.map_comp, _root_.Ab.ulift.map_eq_zero_iff] at H,
ext x,
obtain ⟨c, hc⟩ := exhaustive _ x,
have aux := congr_hom H ⟨function.const _ x, ⟨c, λ _, ⟨x, hc⟩, _⟩⟩,
have := congr_fun (congr_arg subtype.val aux) punit.star, exact this,
refine ⟨continuous_const, rfl⟩ },
{ intros c,
refine subset_trans (h' c) (set.image_subset _ _),
refine filtration_mono le_sup_left }
end


@[simp] lemma to_Condensed_map_zero (A B : CompHausFiltPseuNormGrp₁.{u}) :
to_Condensed.map (0 : A ⟶ B) = 0 :=
by { ext S s x, refl, }
Expand Down

0 comments on commit d530520

Please sign in to comment.