Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

rename exact_with_constant to strongly_exact #130

Merged
merged 1 commit into from
Jan 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions scripts/nolints.txt
Original file line number Diff line number Diff line change
Expand Up @@ -90,9 +90,9 @@ apply_nolint Tinv_nat_trans unused_arguments
apply_nolint twoid_bound_by unused_arguments

-- condensed/exact.lean
apply_nolint CompHausFiltPseuNormGrp₁.exact_with_constant.P1_to_P2_nat_trans_aux_1 unused_arguments
apply_nolint CompHausFiltPseuNormGrp₁.exact_with_constant.P1_to_P2_nat_trans_aux_2 unused_arguments
apply_nolint CompHausFiltPseuNormGrp₁.exact_with_constant.P1_to_P2_nat_trans_aux_3 unused_arguments
apply_nolint CompHausFiltPseuNormGrp₁.strongly_exact.P1_to_P2_nat_trans_aux_1 unused_arguments
apply_nolint CompHausFiltPseuNormGrp₁.strongly_exact.P1_to_P2_nat_trans_aux_2 unused_arguments
apply_nolint CompHausFiltPseuNormGrp₁.strongly_exact.P1_to_P2_nat_trans_aux_3 unused_arguments

-- condensed/extr/basic.lean
apply_nolint product_condition_setup.G unused_arguments
Expand Down
12 changes: 6 additions & 6 deletions src/condensed/condensify.lean
Original file line number Diff line number Diff line change
Expand Up @@ -274,23 +274,23 @@ begin
{ simp only [condensify_nonstrict, nonstrict_extend, whisker_right_comp],
repeat { apply_with mono_comp { instances := ff }; try { apply_instance } },
apply Condensed.mono_to_Condensed_map,
apply exact_with_constant_extend_zero_left,
apply strongly_exact_extend_zero_left,
intro S,
apply_with exact_with_constant_of_mono { instances := ff },
apply_with strongly_exact_of_mono { instances := ff },
rw AddCommGroup.mono_iff_injective,
exact H1 S, },
{ dsimp only [condensify_map, condensify_nonstrict],
rw nonstrict_extend_whisker_right_enlarging,
apply Condensed.epi_to_Condensed_map _ cβ,
apply exact_with_constant_extend_zero_right,
apply strongly_exact_extend_zero_right,
intro S,
apply exact_with_constant_of_epi _ _ _ hcβ (H3b S), },
apply strongly_exact_of_epi _ _ _ hcβ (H3b S), },
{ dsimp only [condensify_map, condensify_nonstrict],
rw nonstrict_extend_whisker_right_enlarging,
simp only [nonstrict_extend, whisker_right_comp, nat_trans.comp_app, category.assoc],
repeat { apply exact_of_iso_comp_exact; [apply_instance, skip] },
apply Condensed.exact_of_exact_with_constant _ _ cα,
apply exact_with_constant.extend,
apply Condensed.exact_of_strongly_exact _ _ cα,
apply strongly_exact.extend,
intro S,
refine ⟨_, _, hcα⟩,
{ ext x, specialize H2a S, apply_fun (λ φ, φ.to_fun) at H2a, exact congr_fun H2a x },
Expand Down
68 changes: 34 additions & 34 deletions src/condensed/exact.lean
Original file line number Diff line number Diff line change
Expand Up @@ -140,13 +140,13 @@ instance : has_zero_morphisms (CompHausFiltPseuNormGrp₁.{u}) :=
zero_comp' := λ _ _ _ f, by { ext, exact f.map_zero } }
variables {A B C : CompHausFiltPseuNormGrp₁.{u}}

structure exact_with_constant (f : A ⟶ B) (g : B ⟶ C) (r : ℝ≥0 → ℝ≥0) : Prop :=
structure strongly_exact (f : A ⟶ B) (g : B ⟶ C) (r : ℝ≥0 → ℝ≥0) : Prop :=
(comp_eq_zero : f ≫ g = 0)
(cond : ∀ c : ℝ≥0, g ⁻¹' {0} ∩ (filtration B c) ⊆ f '' (filtration A (r c)))
(large : id ≤ r)

lemma exact_with_constant.exact {f : A ⟶ B} {g : B ⟶ C} {r : ℝ≥0 → ℝ≥0}
(h : exact_with_constant f g r) :
lemma strongly_exact.exact {f : A ⟶ B} {g : B ⟶ C} {r : ℝ≥0 → ℝ≥0}
(h : strongly_exact f g r) :
exact ((to_PNG₁ ⋙ PseuNormGrp₁.to_Ab).map f) ((to_PNG₁ ⋙ PseuNormGrp₁.to_Ab).map g) :=
begin
rw AddCommGroup.exact_iff',
Expand All @@ -168,7 +168,7 @@ instance mono_Filtration_map_app (c₁ c₂ : ℝ≥0) (h : c₁ ⟶ c₂) (M) :
mono ((Filtration.map h).app M) :=
by { rw CompHaus.mono_iff_injective, convert injective_cast_le _ _ }

namespace exact_with_constant
namespace strongly_exact
noncomputable theory

variables (f : A ⟶ B) (g : B ⟶ C) (r : ℝ≥0 → ℝ≥0) (c : ℝ≥0) (hrc : c ≤ r c)
Expand Down Expand Up @@ -201,7 +201,7 @@ lemma P1_to_P2_comp_fst (hfg : f ≫ g = 0) :
P1_to_P2 f g hrc hfg ≫ pullback.fst = pullback.fst :=
pullback.lift_fst _ _ _

lemma surjective (h : exact_with_constant f g r) :
lemma surjective (h : strongly_exact f g r) :
∃ (hfg : f ≫ g = 0), ∀ c, function.surjective (P1_to_P2 f g (h.large c) hfg) :=
begin
have hfg : f ≫ g = 0,
Expand Down Expand Up @@ -232,7 +232,7 @@ end

lemma of_surjective (hfg : f ≫ g = 0) (hr : id ≤ r)
(h : ∀ c, function.surjective (P1_to_P2 f g (hr c) hfg)) :
exact_with_constant f g r :=
strongly_exact f g r :=
begin
suffices H : ∀ (c : ℝ≥0), g ⁻¹' {0} ∩ filtration B c ⊆ f '' filtration A (r c),
{ refine ⟨_, H, hr⟩,
Expand All @@ -258,7 +258,7 @@ begin
end

lemma iff_surjective :
exact_with_constant f g r ↔
strongly_exact f g r ↔
∃ (hfg : f ≫ g = 0) (hr : ∀ c, c ≤ r c),
∀ c, function.surjective (P1_to_P2 f g (hr c) hfg) :=
begin
Expand All @@ -267,9 +267,9 @@ begin
{ rintro ⟨hfg, hr, h⟩, exact of_surjective f g hfg hr h }
end

end exact_with_constant
end strongly_exact

namespace exact_with_constant
namespace strongly_exact

variables {J : Type u} [small_category J]
variables {A' B' C' : J ⥤ CompHausFiltPseuNormGrp₁.{u}}
Expand Down Expand Up @@ -486,7 +486,7 @@ begin
category_theory.limits.has_limit.iso_of_nat_iso_inv_π_assoc],
erw [limit_flip_comp_lim_iso_limit_comp_lim'_hom_π_π, lim_map_π_assoc],
simp only [category_theory.category.id_comp,
CompHausFiltPseuNormGrp₁.exact_with_constant.P1_to_P2_nat_trans_app,
CompHausFiltPseuNormGrp₁.strongly_exact.P1_to_P2_nat_trans_app,
category_theory.category.assoc],
erw [lim_map_π],
dsimp [P1_to_P2],
Expand All @@ -513,12 +513,12 @@ end

lemma extend {A B C : Fintype.{u} ⥤ CompHausFiltPseuNormGrp₁.{u}}
(f : A ⟶ B) (g : B ⟶ C) (r : ℝ≥0 → ℝ≥0)
(hfg : ∀ S, exact_with_constant (f.app S) (g.app S) r) (S : Profinite) :
exact_with_constant
(hfg : ∀ S, strongly_exact (f.app S) (g.app S) r) (S : Profinite) :
strongly_exact
((Profinite.extend_nat_trans f).app S) ((Profinite.extend_nat_trans g).app S) r :=
begin
have hr : id ≤ r := (hfg $ Fintype.of punit).large,
rw exact_with_constant.iff_surjective,
rw strongly_exact.iff_surjective,
refine ⟨_, hr, _⟩,
{ rw [← nat_trans.comp_app, ← Profinite.extend_nat_trans_comp],
apply limit.hom_ext,
Expand Down Expand Up @@ -553,7 +553,7 @@ begin
apply subsingleton.elim,
end

end exact_with_constant
end strongly_exact

instance has_zero_nat_trans_CHFPNG₁ {𝒞 : Type*} [category 𝒞]
(A B : 𝒞 ⥤ CompHausFiltPseuNormGrp₁.{u}) :
Expand All @@ -572,31 +572,31 @@ begin
simp only [nat_trans.comp_app, whisker_left_app, zero_app, zero_comp, comp_zero],
end

lemma exact_with_constant_extend_zero_left (A B C : Fintype ⥤ CompHausFiltPseuNormGrp₁.{u})
lemma strongly_exact_extend_zero_left (A B C : Fintype ⥤ CompHausFiltPseuNormGrp₁.{u})
(g : B ⟶ C) (r : ℝ≥0 → ℝ≥0)
(hfg : ∀ S, exact_with_constant (0 : A.obj S ⟶ B.obj S) (g.app S) r) (S : Profinite) :
exact_with_constant (0 : (Profinite.extend A).obj S ⟶ (Profinite.extend B).obj S)
(hfg : ∀ S, strongly_exact (0 : A.obj S ⟶ B.obj S) (g.app S) r) (S : Profinite) :
strongly_exact (0 : (Profinite.extend A).obj S ⟶ (Profinite.extend B).obj S)
((Profinite.extend_nat_trans g).app S) r :=
begin
have := exact_with_constant.extend (0 : A ⟶ B) g r hfg S,
have := strongly_exact.extend (0 : A ⟶ B) g r hfg S,
simpa,
end

lemma exact_with_constant_extend_zero_right (A B C : Fintype ⥤ CompHausFiltPseuNormGrp₁.{u})
lemma strongly_exact_extend_zero_right (A B C : Fintype ⥤ CompHausFiltPseuNormGrp₁.{u})
(f : A ⟶ B) (r : ℝ≥0 → ℝ≥0)
(hfg : ∀ S, exact_with_constant (f.app S) (0 : B.obj S ⟶ C.obj S) r) (S : Profinite) :
exact_with_constant ((Profinite.extend_nat_trans f).app S)
(hfg : ∀ S, strongly_exact (f.app S) (0 : B.obj S ⟶ C.obj S) r) (S : Profinite) :
strongly_exact ((Profinite.extend_nat_trans f).app S)
(0 : (Profinite.extend B).obj S ⟶ (Profinite.extend C).obj S) r :=
begin
have := exact_with_constant.extend f (0 : B ⟶ C) r hfg S,
have := strongly_exact.extend f (0 : B ⟶ C) r hfg S,
simpa,
end

variables (C)

lemma exact_with_constant_of_epi (f : A ⟶ B) (r : ℝ≥0 → ℝ≥0) (hr : id ≤ r)
lemma strongly_exact_of_epi (f : A ⟶ B) (r : ℝ≥0 → ℝ≥0) (hr : id ≤ r)
(hf : ∀ c, filtration B c ⊆ f '' (filtration A (r c))) :
exact_with_constant f (0 : B ⟶ C) r :=
strongly_exact f (0 : B ⟶ C) r :=
begin
refine ⟨_, _, hr⟩,
{ rw comp_zero },
Expand All @@ -605,8 +605,8 @@ end

variables (A) {C}

lemma exact_with_constant_of_mono (g : B ⟶ C) [hg : mono ((to_PNG₁ ⋙ PseuNormGrp₁.to_Ab).map g)] :
exact_with_constant (0 : A ⟶ B) g id :=
lemma strongly_exact_of_mono (g : B ⟶ C) [hg : mono ((to_PNG₁ ⋙ PseuNormGrp₁.to_Ab).map g)] :
strongly_exact (0 : A ⟶ B) g id :=
begin
refine ⟨_, _, le_rfl⟩,
{ rw zero_comp },
Expand Down Expand Up @@ -654,16 +654,16 @@ begin
end

open comphaus_filtered_pseudo_normed_group
open CompHausFiltPseuNormGrp₁.exact_with_constant (P1 P2 P1_to_P2 P1_to_P2_comp_fst c_le_rc)
open CompHausFiltPseuNormGrp₁.strongly_exact (P1 P2 P1_to_P2 P1_to_P2_comp_fst c_le_rc)

lemma exact_of_exact_with_constant {A B C : CompHausFiltPseuNormGrp₁.{u}}
lemma exact_of_strongly_exact {A B C : CompHausFiltPseuNormGrp₁.{u}}
(f : A ⟶ B) (g : B ⟶ C) (r : ℝ≥0 → ℝ≥0)
(hfg : exact_with_constant f g r) :
(hfg : strongly_exact f g r) :
exact (to_Condensed.map f) (to_Condensed.map g) :=
begin
rw exact_iff_ExtrDisc,
intro S,
rw exact_with_constant.iff_surjective at hfg,
rw strongly_exact.iff_surjective at hfg,
rcases hfg with ⟨hfg, hr, H⟩,
simp only [subtype.val_eq_coe, to_Condensed_map, CompHausFiltPseuNormGrp.Presheaf.map_app,
whisker_right_app, Ab.exact_ulift_map],
Expand Down Expand Up @@ -704,20 +704,20 @@ end
by { ext S s x, refl, }

lemma mono_to_Condensed_map {A B : CompHausFiltPseuNormGrp₁.{u}}
(f : A ⟶ B) (hf : exact_with_constant (0 : A ⟶ A) f id) :
(f : A ⟶ B) (hf : strongly_exact (0 : A ⟶ A) f id) :
mono (to_Condensed.map f) :=
begin
refine ((abelian.tfae_mono (to_Condensed.obj A) (to_Condensed.map f)).out 2 0).mp _,
have := exact_of_exact_with_constant (0 : A ⟶ A) f id hf,
have := exact_of_strongly_exact (0 : A ⟶ A) f id hf,
simpa only [to_Condensed_map_zero],
end

lemma epi_to_Condensed_map {A B : CompHausFiltPseuNormGrp₁.{u}}
(f : A ⟶ B) (r : ℝ≥0 → ℝ≥0) (hf : exact_with_constant f (0 : B ⟶ B) r) :
(f : A ⟶ B) (r : ℝ≥0 → ℝ≥0) (hf : strongly_exact f (0 : B ⟶ B) r) :
epi (to_Condensed.map f) :=
begin
refine ((abelian.tfae_epi (to_Condensed.obj B) (to_Condensed.map f)).out 2 0).mp _,
have := exact_of_exact_with_constant f (0 : B ⟶ B) r hf,
have := exact_of_strongly_exact f (0 : B ⟶ B) r hf,
simpa only [to_Condensed_map_zero]
end

Expand Down
8 changes: 4 additions & 4 deletions src/normed_free_pfpng/compare.lean
Original file line number Diff line number Diff line change
Expand Up @@ -69,9 +69,9 @@ begin
simp only [cond_free_pfpng_to_normed_free_pfpng, condensify_map, condensify_nonstrict],
rw nonstrict_extend_whisker_right_enlarging,
apply Condensed.mono_to_Condensed_map,
apply exact_with_constant_extend_zero_left,
apply strongly_exact_extend_zero_left,
intro S,
apply_with exact_with_constant_of_mono { instances := ff },
apply_with strongly_exact_of_mono { instances := ff },
rw [AddCommGroup.mono_iff_injective, injective_iff_map_eq_zero],
intros f hf,
exact hf,
Expand All @@ -84,9 +84,9 @@ begin
let κ : ℝ≥0 → ℝ≥0 := λ c, max c (c ^ (p⁻¹ : ℝ)),
have hκ : id ≤ κ := λ c, le_max_left _ _,
apply Condensed.epi_to_Condensed_map _ κ,
apply exact_with_constant_extend_zero_right,
apply strongly_exact_extend_zero_right,
intro S,
apply exact_with_constant_of_epi _ _ _ hκ,
apply strongly_exact_of_epi _ _ _ hκ,
intros c f hf,
refine ⟨f, _, rfl⟩,
change ∑ _, _ ≤ _ at hf,
Expand Down
Loading