Skip to content

Commit

Permalink
zetaDelta
Browse files Browse the repository at this point in the history
  • Loading branch information
kim-em committed Nov 21, 2024
1 parent ba20a3b commit b1016a1
Show file tree
Hide file tree
Showing 4 changed files with 9 additions and 8 deletions.
5 changes: 3 additions & 2 deletions Mathlib/Algebra/Homology/ShortComplex/Abelian.lean
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,8 @@ noncomputable def ofAbelian : S.LeftHomologyData := by
IsLimit.conePointUniqueUpToIso_hom_comp _ _ WalkingParallelPair.zero
have fac : f' = Abelian.factorThruImage S.f ≫ e.hom ≫ kernel.ι γ := by
rw [hf', he]
simp only [f', kernel.lift_ι, abelianImageToKernel, ← cancel_mono (kernel.ι S.g), assoc]
simp +zetaDelta only [f', kernel.lift_ι, abelianImageToKernel, ← cancel_mono (kernel.ι S.g),
assoc]
have hπ : IsColimit (CokernelCofork.ofπ _ wπ) :=
CokernelCofork.IsColimit.ofπ _ _
(fun x hx => cokernel.desc _ x (by
Expand Down Expand Up @@ -150,7 +151,7 @@ noncomputable def ofAbelian : S.RightHomologyData := by
IsColimit.comp_coconePointUniqueUpToIso_hom _ _ WalkingParallelPair.one
have fac : g' = cokernel.π γ ≫ e.hom ≫ Abelian.factorThruCoimage S.g := by
rw [hg', reassoc_of% he]
simp only [g', cokernel.π_desc, ← cancel_epi (cokernel.π S.f),
simp +zetaDelta only [g', cokernel.π_desc, ← cancel_epi (cokernel.π S.f),
cokernel_π_comp_cokernelToAbelianCoimage_assoc]
have hι : IsLimit (KernelFork.ofι _ wι) :=
KernelFork.IsLimit.ofι _ _
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/CategoryTheory/Idempotents/FunctorCategories.lean
Original file line number Diff line number Diff line change
Expand Up @@ -70,14 +70,14 @@ instance functor_category_isIdempotentComplete [IsIdempotentComplete C] :
let e : F ⟶ Y :=
{ app := fun j =>
equalizer.lift (p.app j) (by simpa only [comp_id] using (congr_app hp j).symm)
naturality := fun j j' φ => equalizer.hom_ext (by simp) }
naturality := fun j j' φ => equalizer.hom_ext (by simp +zetaDelta ) }
use Y, i, e
constructor
· ext j
dsimp
rw [assoc, equalizer.lift_ι, ← equalizer.condition, id_comp, comp_id]
· ext j
simp
simp +zetaDelta
namespace KaroubiFunctorCategoryEmbedding

variable {J C}
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/Sites/CoverPreserving.lean
Original file line number Diff line number Diff line change
Expand Up @@ -132,7 +132,7 @@ theorem compatiblePreservingOfFlat {C : Type u₁} [Category.{v₁} C] {D : Type
simp
conv_lhs => rw [eq₁]
conv_rhs => rw [eq₂]
simp only [op_comp, Functor.map_comp, types_comp_apply, eqToHom_op, eqToHom_map]
simp +zetaDelta only [op_comp, Functor.map_comp, types_comp_apply, eqToHom_op, eqToHom_map]
apply congr_arg -- Porting note: was `congr 1` which for some reason doesn't do anything here
-- despite goal being of the form f a = f b, with f=`ℱ.val.map (Quiver.Hom.op c'.pt.hom)`
/-
Expand Down
6 changes: 3 additions & 3 deletions Mathlib/Order/LiminfLimsup.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1462,7 +1462,7 @@ theorem HasBasis.liminf_eq_ciSup_ciInf {v : Filter ι}
apply Subset.antisymm
· apply iUnion_subset (fun j ↦ ?_)
by_cases hj : j ∈ m
· have : j = liminf_reparam f s p j := by simp only [liminf_reparam, hj, ite_true]
· have : j = liminf_reparam f s p j := by simp +zetaDelta only [liminf_reparam, hj, ite_true]
conv_lhs => rw [this]
apply subset_iUnion _ j
· simp only [m, mem_setOf_eq, ← nonempty_iInter_Iic_iff, not_nonempty_iff_eq_empty] at hj
Expand All @@ -1475,8 +1475,8 @@ theorem HasBasis.liminf_eq_ciSup_ciInf {v : Filter ι}
apply (Iic_ciInf _).symm
change liminf_reparam f s p j ∈ m
by_cases Hj : j ∈ m
· simpa only [liminf_reparam, if_pos Hj] using Hj
· simp only [liminf_reparam, if_neg Hj]
· simpa +zetaDelta only [liminf_reparam, if_pos Hj] using Hj
· simp +zetaDelta only [liminf_reparam, if_neg Hj]
have Z : ∃ n, (exists_surjective_nat (Subtype p)).choose n ∈ m ∨ ∀ j, j ∉ m := by
rcases (exists_surjective_nat (Subtype p)).choose_spec j0 with ⟨n, rfl⟩
exact ⟨n, Or.inl hj0⟩
Expand Down

0 comments on commit b1016a1

Please sign in to comment.