-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
restore original version of euroscipy2016
- Loading branch information
Valerio Maggio
committed
Aug 22, 2017
1 parent
5973123
commit fd5587d
Showing
68 changed files
with
23,873 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
399 changes: 399 additions & 0 deletions
399
1.4 (Extra) A Simple Implementation of ANN for MNIST.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,399 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"source": [ | ||
"# A simple implementation of ANN for MNIST\n", | ||
"\n", | ||
"This code was taken from: https://github.com/mnielsen/neural-networks-and-deep-learning\n", | ||
"\n", | ||
"This accompanies the online text http://neuralnetworksanddeeplearning.com/ . The book is highly recommended. " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"Using Theano backend.\n", | ||
"Using gpu device 0: GeForce GTX 760 (CNMeM is enabled with initial size: 90.0% of memory, cuDNN 4007)\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# Import libraries\n", | ||
"import random\n", | ||
"import numpy as np\n", | ||
"import keras\n", | ||
"from keras.datasets import mnist" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Set the full path to mnist.pkl.gz\n", | ||
"# Point this to the data folder inside the repository\n", | ||
"path_to_dataset = \"euroscipy2016_dl-tutorial/data/mnist.pkl.gz\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"!mkdir -p $HOME/.keras/datasets/euroscipy2016_dl-tutorial/data/" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Downloading data from https://s3.amazonaws.com/img-datasets/mnist.pkl.gz\n", | ||
"15286272/15296311 [============================>.] - ETA: 0s" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# Load the datasets\n", | ||
"(X_train, y_train), (X_test, y_test) = mnist.load_data(path_to_dataset)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"(60000, 28, 28) (60000,)\n", | ||
"(10000, 28, 28) (10000,)\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"print(X_train.shape, y_train.shape)\n", | ||
"print(X_test.shape, y_test.shape)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"\"\"\"\n", | ||
"network.py\n", | ||
"~~~~~~~~~~\n", | ||
"A module to implement the stochastic gradient descent learning\n", | ||
"algorithm for a feedforward neural network. Gradients are calculated\n", | ||
"using backpropagation. Note that I have focused on making the code\n", | ||
"simple, easily readable, and easily modifiable. It is not optimized,\n", | ||
"and omits many desirable features.\n", | ||
"\"\"\"\n", | ||
"\n", | ||
"#### Libraries\n", | ||
"# Standard library\n", | ||
"import random\n", | ||
"\n", | ||
"# Third-party libraries\n", | ||
"import numpy as np\n", | ||
"\n", | ||
"class Network(object):\n", | ||
"\n", | ||
" def __init__(self, sizes):\n", | ||
" \"\"\"The list ``sizes`` contains the number of neurons in the\n", | ||
" respective layers of the network. For example, if the list\n", | ||
" was [2, 3, 1] then it would be a three-layer network, with the\n", | ||
" first layer containing 2 neurons, the second layer 3 neurons,\n", | ||
" and the third layer 1 neuron. The biases and weights for the\n", | ||
" network are initialized randomly, using a Gaussian\n", | ||
" distribution with mean 0, and variance 1. Note that the first\n", | ||
" layer is assumed to be an input layer, and by convention we\n", | ||
" won't set any biases for those neurons, since biases are only\n", | ||
" ever used in computing the outputs from later layers.\"\"\"\n", | ||
" self.num_layers = len(sizes)\n", | ||
" self.sizes = sizes\n", | ||
" self.biases = [np.random.randn(y, 1) for y in sizes[1:]]\n", | ||
" self.weights = [np.random.randn(y, x)\n", | ||
" for x, y in zip(sizes[:-1], sizes[1:])]\n", | ||
"\n", | ||
" def feedforward(self, a):\n", | ||
" \"\"\"Return the output of the network if ``a`` is input.\"\"\"\n", | ||
" for b, w in zip(self.biases, self.weights):\n", | ||
" a = sigmoid(np.dot(w, a)+b)\n", | ||
" return a\n", | ||
"\n", | ||
" def SGD(self, training_data, epochs, mini_batch_size, eta,\n", | ||
" test_data=None):\n", | ||
" \"\"\"Train the neural network using mini-batch stochastic\n", | ||
" gradient descent. The ``training_data`` is a list of tuples\n", | ||
" ``(x, y)`` representing the training inputs and the desired\n", | ||
" outputs. The other non-optional parameters are\n", | ||
" self-explanatory. If ``test_data`` is provided then the\n", | ||
" network will be evaluated against the test data after each\n", | ||
" epoch, and partial progress printed out. This is useful for\n", | ||
" tracking progress, but slows things down substantially.\"\"\"\n", | ||
" training_data = list(training_data)\n", | ||
" test_data = list(test_data)\n", | ||
" if test_data: n_test = len(test_data)\n", | ||
" n = len(training_data)\n", | ||
" for j in range(epochs):\n", | ||
" random.shuffle(training_data)\n", | ||
" mini_batches = [\n", | ||
" training_data[k:k+mini_batch_size]\n", | ||
" for k in range(0, n, mini_batch_size)]\n", | ||
" for mini_batch in mini_batches:\n", | ||
" self.update_mini_batch(mini_batch, eta)\n", | ||
" if test_data:\n", | ||
" print( \"Epoch {0}: {1} / {2}\".format(\n", | ||
" j, self.evaluate(test_data), n_test))\n", | ||
" else:\n", | ||
" print( \"Epoch {0} complete\".format(j))\n", | ||
"\n", | ||
" def update_mini_batch(self, mini_batch, eta):\n", | ||
" \"\"\"Update the network's weights and biases by applying\n", | ||
" gradient descent using backpropagation to a single mini batch.\n", | ||
" The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``\n", | ||
" is the learning rate.\"\"\"\n", | ||
" nabla_b = [np.zeros(b.shape) for b in self.biases]\n", | ||
" nabla_w = [np.zeros(w.shape) for w in self.weights]\n", | ||
" for x, y in mini_batch:\n", | ||
" delta_nabla_b, delta_nabla_w = self.backprop(x, y)\n", | ||
" nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]\n", | ||
" nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]\n", | ||
" self.weights = [w-(eta/len(mini_batch))*nw\n", | ||
" for w, nw in zip(self.weights, nabla_w)]\n", | ||
" self.biases = [b-(eta/len(mini_batch))*nb\n", | ||
" for b, nb in zip(self.biases, nabla_b)]\n", | ||
"\n", | ||
" def backprop(self, x, y):\n", | ||
" \"\"\"Return a tuple ``(nabla_b, nabla_w)`` representing the\n", | ||
" gradient for the cost function C_x. ``nabla_b`` and\n", | ||
" ``nabla_w`` are layer-by-layer lists of numpy arrays, similar\n", | ||
" to ``self.biases`` and ``self.weights``.\"\"\"\n", | ||
" nabla_b = [np.zeros(b.shape) for b in self.biases]\n", | ||
" nabla_w = [np.zeros(w.shape) for w in self.weights]\n", | ||
" # feedforward\n", | ||
" activation = x\n", | ||
" activations = [x] # list to store all the activations, layer by layer\n", | ||
" zs = [] # list to store all the z vectors, layer by layer\n", | ||
" for b, w in zip(self.biases, self.weights):\n", | ||
" z = np.dot(w, activation)+b\n", | ||
" zs.append(z)\n", | ||
" activation = sigmoid(z)\n", | ||
" activations.append(activation)\n", | ||
" # backward pass\n", | ||
" delta = self.cost_derivative(activations[-1], y) * \\\n", | ||
" sigmoid_prime(zs[-1])\n", | ||
" nabla_b[-1] = delta\n", | ||
" nabla_w[-1] = np.dot(delta, activations[-2].transpose())\n", | ||
" # Note that the variable l in the loop below is used a little\n", | ||
" # differently to the notation in Chapter 2 of the book. Here,\n", | ||
" # l = 1 means the last layer of neurons, l = 2 is the\n", | ||
" # second-last layer, and so on. It's a renumbering of the\n", | ||
" # scheme in the book, used here to take advantage of the fact\n", | ||
" # that Python can use negative indices in lists.\n", | ||
" for l in range(2, self.num_layers):\n", | ||
" z = zs[-l]\n", | ||
" sp = sigmoid_prime(z)\n", | ||
" delta = np.dot(self.weights[-l+1].transpose(), delta) * sp\n", | ||
" nabla_b[-l] = delta\n", | ||
" nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())\n", | ||
" return (nabla_b, nabla_w)\n", | ||
"\n", | ||
" def evaluate(self, test_data):\n", | ||
" \"\"\"Return the number of test inputs for which the neural\n", | ||
" network outputs the correct result. Note that the neural\n", | ||
" network's output is assumed to be the index of whichever\n", | ||
" neuron in the final layer has the highest activation.\"\"\"\n", | ||
" test_results = [(np.argmax(self.feedforward(x)), y)\n", | ||
" for (x, y) in test_data]\n", | ||
" return sum(int(x == y) for (x, y) in test_results)\n", | ||
"\n", | ||
" def cost_derivative(self, output_activations, y):\n", | ||
" \"\"\"Return the vector of partial derivatives \\partial C_x /\n", | ||
" \\partial a for the output activations.\"\"\"\n", | ||
" return (output_activations-y)\n", | ||
"\n", | ||
"#### Miscellaneous functions\n", | ||
"def sigmoid(z):\n", | ||
" \"\"\"The sigmoid function.\"\"\"\n", | ||
" return 1.0/(1.0+np.exp(-z))\n", | ||
"\n", | ||
"def sigmoid_prime(z):\n", | ||
" \"\"\"Derivative of the sigmoid function.\"\"\"\n", | ||
" return sigmoid(z)*(1-sigmoid(z))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"def vectorized_result(j):\n", | ||
" \"\"\"Return a 10-dimensional unit vector with a 1.0 in the jth\n", | ||
" position and zeroes elsewhere. This is used to convert a digit\n", | ||
" (0...9) into a corresponding desired output from the neural\n", | ||
" network.\"\"\"\n", | ||
" e = np.zeros((10, 1))\n", | ||
" e[j] = 1.0\n", | ||
" return e" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"net = Network([784, 30, 10])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"training_inputs = [np.reshape(x, (784, 1)) for x in X_train.copy()]\n", | ||
"training_results = [vectorized_result(y) for y in y_train.copy()]\n", | ||
"training_data = zip(training_inputs, training_results)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"test_inputs = [np.reshape(x, (784, 1)) for x in X_test.copy()]\n", | ||
"test_data = zip(test_inputs, y_test.copy())" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Epoch 0: 1348 / 10000\n", | ||
"Epoch 1: 1939 / 10000\n", | ||
"Epoch 2: 2046 / 10000\n", | ||
"Epoch 3: 1422 / 10000\n", | ||
"Epoch 4: 1365 / 10000\n", | ||
"Epoch 5: 1351 / 10000\n", | ||
"Epoch 6: 1879 / 10000\n", | ||
"Epoch 7: 1806 / 10000\n", | ||
"Epoch 8: 1754 / 10000\n", | ||
"Epoch 9: 1974 / 10000\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"net.SGD(training_data, 10, 10, 3.0, test_data=test_data)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 12, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Epoch 0: 3526 / 10000\n", | ||
"Epoch 1: 3062 / 10000\n", | ||
"Epoch 2: 2946 / 10000\n", | ||
"Epoch 3: 2462 / 10000\n", | ||
"Epoch 4: 3617 / 10000\n", | ||
"Epoch 5: 3773 / 10000\n", | ||
"Epoch 6: 3568 / 10000\n", | ||
"Epoch 7: 4459 / 10000\n", | ||
"Epoch 8: 3009 / 10000\n", | ||
"Epoch 9: 2660 / 10000\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"net = Network([784, 10, 10])\n", | ||
"\n", | ||
"training_inputs = [np.reshape(x, (784, 1)) for x in X_train.copy()]\n", | ||
"training_results = [vectorized_result(y) for y in y_train.copy()]\n", | ||
"training_data = zip(training_inputs, training_results)\n", | ||
"\n", | ||
"test_inputs = [np.reshape(x, (784, 1)) for x in X_test.copy()]\n", | ||
"test_data = zip(test_inputs, y_test.copy())\n", | ||
"\n", | ||
"net.SGD(training_data, 10, 10, 1.0, test_data=test_data)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.5.2" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 0 | ||
} |
Oops, something went wrong.