Classify truth-tellers versus liars based on their cluster distributions using several different classification methods from scikit-learn. Designed for use with the ROC-HCI deception dataset, to contrast the temporal modeling of Hidden Markov Models.
Author: Matt Levin
python3 clf.py [-m Method] [-i InputFolder] [-k NumberFolds] [-d NumberClusters] [-s RandomSeed]
- Run with specified method and parameters.
python3 clf.py --all_methods [-i InputFolder] [-k NumberFolds] [-d NumberClusters] [-s RandomSeed]
- Run with each available method and specified parameters.
- SVM - uses sklearn.svm.SVC as classifier (Support Vector Classifier)
- MLP - uses sklearn.neural_network.MLPClassifier (Multilayer Perceptron Classifier)
- GNB - uses sklearn.naive_bayes.GaussianNB (Gaussian Naive Bayes Classifier)
- BNB - uses sklearn.naive_bayes.BernoulliNB (Bernoulli Naive Bayes Classifier)
- DT - uses sklearn.tree.DecisionTreeClassifier (Decision Tree Classifier)
- KNN - uses sklearn.neighbors.KNeighborsClassifier (K-Nearest Neighbors Classifier)
python3 clf.py -m MLP -i test -k 10 -s 9999
- Uses MLPClassifier on test data folder with 10 folds, random state 9999, and default number of clusters.
python3 clf.py --all_methods -i test -k 5
- Uses each classifier on test data folder with 5 folds and default random state and number of clusters.
python3 clf.py -h
- Shows usage/help message.