Skip to content

A stream-translator fork with VAD based audio slicing & GPT / Gemini translation.

License

Notifications You must be signed in to change notification settings

lin16303/stream-translator-gpt

 
 

Repository files navigation

PyPI version

stream-translator-gpt

English | 简体中文

flowchart LR
    subgraph ga["`**Input**`"]
        direction LR
        aa("`**FFmpeg**`")
        ab("`**Device audio**`")
        ac("`**yt-dlp**`")
        ad("`**Local video file**`")
        ae("`**Live streaming**`")
        ac --> aa
        ad --> aa
        ae --> ac
    end
    subgraph gb["`**Audio Slicing**`"]
        direction LR
        ba("`**VAD**`")
    end
    subgraph gc["`**Transcription**`"]
        direction LR
        ca("`**Whisper**`")
        cb("`**Faster-Whisper**`")
        cc("`**Whisper API**`")
    end
    subgraph gd["`**Translation**`"]
        direction LR
        da("`**GPT API**`")
        db("`**Gemini API**`")
    end
    subgraph ge["`**Output**`"]
        direction LR
        ea("`**Print to stdout**`")
        eb("`**Cqhttp**`")
        ec("`**Discord**`")
    end
    aa --> gb
    ab --> gb
    gb ==> gc
    gc ==> gd
    gd ==> ge
Loading

Command line utility to transcribe or translate audio from livestreams in real time. Uses yt-dlp to get livestream URLs from various services and Whisper / Faster-Whisper for transcription.

This fork optimized the audio slicing logic based on VAD, introduced GPT API / Gemini API to support language translation beyond English, and supports input from the audio devices.

Try it on Colab: Open In Colab

Prerequisites

Linux or Windows:

  1. Python >= 3.8 (Recommend >= 3.10)
  2. Install CUDA on your system. You can check the installed CUDA version with nvcc --version.
  3. Install cuDNN to your CUDA dir if you want to use Faseter-Whisper.
  4. Install PyTorch (with CUDA) to your Python.
  5. Create a Google API key if you want to use Gemini API for translation. (Recommend, Free 60 requests / minute)
  6. Create a OpenAI API key if you want to use Whisper API for transcription or GPT API for translation.

If you are in Windows, you also need to:

  1. Install and add ffmpeg to your PATH.
  2. Install yt-dlp and add it to your PATH.

Installation

Install release version from PyPI (Recommend):

pip install stream-translator-gpt
stream-translator-gpt

or

Clone master version code from Github:

git clone https://github.com/ionic-bond/stream-translator-gpt.git
pip install -r ./stream-translator-gpt/requirements.txt
python3 ./stream-translator-gpt/translator.py

Usage

  • Transcribe live streaming (default use Whisper):

    stream-translator-gpt {URL} --model large --language {input_language}

  • Transcribe by Faster Whisper:

    stream-translator-gpt {URL} --model large --language {input_language} --use_faster_whisper

  • Transcribe by Whisper API:

    stream-translator-gpt {URL} --language {input_language} --use_whisper_api --openai_api_key {your_openai_key}

  • Translate to other language by Gemini:

    stream-translator-gpt {URL} --model large --language ja --gpt_translation_prompt "Translate from Japanese to Chinese" --google_api_key {your_google_key}

  • Translate to other language by GPT:

    stream-translator-gpt {URL} --model large --language ja --gpt_translation_prompt "Translate from Japanese to Chinese" --openai_api_key {your_openai_key}

  • Using Whisper API and Gemini at the same time:

    stream-translator-gpt {URL} --model large --language ja --use_whisper_api --openai_api_key {your_openai_key} --gpt_translation_prompt "Translate from Japanese to Chinese" --google_api_key {your_google_key}

  • Local video/audio file as input:

    stream-translator-gpt /path/to/file --model large --language {input_language}

  • Computer microphone as input:

    stream-translator-gpt device --model large --language {input_language}

    Will use the system's default audio device as input.

    If you want to use another audio input device, stream-translator-gpt device --print_all_devices get device index and then run the CLI with --device_index {index}.

    If you want to use the audio output of another program as input, you need to enable stereo mix.

  • Sending result to Cqhttp:

    stream-translator-gpt {URL} --model large --language {input_language} --cqhttp_url {your_cqhttp_url} --cqhttp_token {your_cqhttp_token}

  • Sending result to Discord:

    stream-translator-gpt {URL} --model large --language {input_language} --discord_webhook_url {your_discord_webhook_url}

All options

Option Default Value Description
Input Options
URL The URL of the stream. If a local file path is filled in, it will be used as input. If fill in "device", the input will be obtained from your PC device.
--format wa* Stream format code, this parameter will be passed directly to yt-dlp.
--cookies Used to open member-only stream, this parameter will be passed directly to yt-dlp.
--direct_url Set this flag to pass the URL directly to ffmpeg. Otherwise, yt-dlp is used to obtain the stream URL.
--device_index The index of the device that needs to be recorded. If not set, the system default recording device will be used.
Audio Slicing Options
--frame_duration 0.1 The unit that processes live streaming data in seconds.
--continuous_no_speech_threshold 0.8 Slice if there is no speech for a continuous period in second.
--min_audio_length 3.0 Minimum slice audio length in seconds.
--max_audio_length 30.0 Maximum slice audio length in seconds.
--prefix_retention_length 0.8 The length of the retention prefix audio during slicing.
--vad_threshold 0.5 The threshold of Voice activity detection. if the speech probability of a frame is higher than this value, then this frame is speech.
Transcription Options
--model small Select model size. See here for available models.
--language auto Language spoken in the stream. See here for available languages.
--beam_size 5 Number of beams in beam search. Set to 0 to use greedy algorithm instead (faster but less accurate).
--best_of 5 Number of candidates when sampling with non-zero temperature.
--use_faster_whisper Set this flag to use Faster Whisper implementation instead of the original OpenAI implementation
--use_whisper_api Set this flag to use OpenAI Whisper API instead of the original local Whipser.
--whisper_filters emoji_filter Filters apply to whisper results, separated by ",".
Translation Options
--openai_api_key OpenAI API key if using GPT translation / Whisper API.
--google_api_key Google API key if using Gemini translation.
--gpt_model gpt-3.5-turbo GPT model name, gpt-3.5-turbo or gpt-4. (If using Gemini, not need to change this)
--gpt_translation_prompt If set, will translate the result text to target language via GPT / Gemini API (According to which API key is filled in). Example: "Translate from Japanese to Chinese"
--gpt_translation_history_size 0 The number of previous messages sent when calling the GPT / Gemini API. If the history size is 0, the translation will be run parallelly. If the history size > 0, the translation will be run serially.
--gpt_translation_timeout 10 If the GPT / Gemini translation exceeds this number of seconds, the translation will be discarded.
--gpt_base_url Customize the API endpoint of GPT.
--retry_if_translation_fails Retry when translation times out/fails. Used to generate subtitles offline.
Output Options
--output_timestamps Output the timestamp of the text when outputting the text.
--hide_transcribe_result Hide the result of Whisper transcribe.
--cqhttp_url If set, will send the result text to the cqhttp server.
--cqhttp_token Token of cqhttp, if it is not set on the server side, it does not need to fill in.
--discord_webhook_url If set, will send the result text to the discord channel.

Contact me

Telegram: @ionic_bond

Donate

PayPal Donate or PayPal

About

A stream-translator fork with VAD based audio slicing & GPT / Gemini translation.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 95.9%
  • Jupyter Notebook 4.1%