Skip to content

Commit

Permalink
Merge pull request #134 from lincc-frameworks/spectra_tutorial
Browse files Browse the repository at this point in the history
add SDSS spectra notebook
  • Loading branch information
dougbrn authored Aug 8, 2024
2 parents 71ae3ba + d05af73 commit 5a6ab4a
Show file tree
Hide file tree
Showing 3 changed files with 188 additions and 1 deletion.
5 changes: 4 additions & 1 deletion docs/requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -7,4 +7,7 @@ nbsphinx
sphinx
sphinx-autoapi
sphinx-copybutton
sphinx-book-theme
sphinx-book-theme
astroquery
astropy
matplotlib
1 change: 1 addition & 0 deletions docs/tutorials.rst
Original file line number Diff line number Diff line change
Expand Up @@ -5,3 +5,4 @@ Tutorials

Loading Data into Nested-Pandas <tutorials/data_loading_notebook>
Lower-level interfaces <tutorials/low_level.ipynb>
Using Nested-Pandas with Astronomical Spectra <tutorials/nested_spectra.ipynb>
183 changes: 183 additions & 0 deletions docs/tutorials/nested_spectra.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,183 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Using Nested-Pandas with Astronomical Spectra"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In Astronomy, a spectrum is a measurement (or combination of measurements) of an object that shows the intensity of light emitted over a range of energies. In this tutorial, we'll walk through a simple example of working with spectra from the Sloan Digital Sky Survey (SDSS), in particular showing how it can be represented as a `NestedFrame`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, we'll use `astroquery` and `astropy` to download a handful of spectra from SDSS:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from astroquery.sdss import SDSS\n",
"from astropy import coordinates as coords\n",
"import astropy.units as u\n",
"import nested_pandas as npd\n",
"\n",
"# Query SDSS for a set of objects with spectra\n",
"pos = coords.SkyCoord(\"0h8m10.63s +14d50m23.3s\", frame=\"icrs\")\n",
"xid = SDSS.query_region(pos, radius=3 * u.arcmin, spectro=True)\n",
"xid_ndf = npd.NestedFrame(xid.to_pandas())\n",
"xid_ndf"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This initial query returns a set of objects with spectra (as specified by the `spectro=True` flag). To actually retrieve the spectra, we can do the following:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Query SDSS for the corresponding spectra\n",
"sp = SDSS.get_spectra(matches=xid)\n",
"sp"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The result is a list of FITS formatted data. From this point there are a few ways that we could move towards a nested-pandas representation. The most straightforward is to build a \"flat\" spectra table from all the objects, where we gather the information from each spectrum into a single combined table."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"# Build a flat spectrum dataframe\n",
"\n",
"# Initialize some empty arrays to hold the flat data\n",
"wave = np.array([])\n",
"flux = np.array([])\n",
"err = np.array([])\n",
"index = np.array([])\n",
"# Loop over each spectrum, adding it's data to the arrays\n",
"for i, hdu in enumerate(sp):\n",
" wave = np.append(wave, 10 ** hdu[\"COADD\"].data.loglam) # * u.angstrom\n",
" flux = np.append(flux, hdu[\"COADD\"].data.flux * 1e-17) # * u.erg/u.second/u.centimeter**2/u.angstrom\n",
" err = np.append(err, 1 / hdu[\"COADD\"].data.ivar * 1e-17) # * flux.unit\n",
"\n",
" # We'll need to set an index to keep track of which rows correspond\n",
" # to which object\n",
" index = np.append(index, i * np.ones(len(hdu[\"COADD\"].data.loglam)))\n",
"\n",
"# Build a NestedFrame from the arrays\n",
"flat_spec = npd.NestedFrame(dict(wave=wave, flux=flux, err=err), index=index.astype(np.int8))\n",
"flat_spec"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"From here, we can simply nest our flat table within our original query result:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"spec_ndf = xid_ndf.add_nested(flat_spec, \"coadd_spectrum\").set_index(\"objid\")\n",
"spec_ndf"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And we can see that each object now has the \"coadd_spectrum\" nested column with the full spectrum available."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Look at one of the spectra\n",
"spec_ndf.iloc[1].coadd_spectrum"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now have our spectra nested, and can proceed to do any filtering and analysis as normal within nested-pandas.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"# Plot a spectrum\n",
"spec = spec_ndf.iloc[1].coadd_spectrum\n",
"\n",
"plt.plot(spec[\"wave\"], spec[\"flux\"])\n",
"plt.xlabel(\"Wavelength (Å)\")\n",
"plt.ylabel(r\"Flux ($ergs/s/cm^2/Å$)\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

0 comments on commit 5a6ab4a

Please sign in to comment.