-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #134 from lincc-frameworks/spectra_tutorial
add SDSS spectra notebook
- Loading branch information
Showing
3 changed files
with
188 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,183 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Using Nested-Pandas with Astronomical Spectra" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"In Astronomy, a spectrum is a measurement (or combination of measurements) of an object that shows the intensity of light emitted over a range of energies. In this tutorial, we'll walk through a simple example of working with spectra from the Sloan Digital Sky Survey (SDSS), in particular showing how it can be represented as a `NestedFrame`." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"First, we'll use `astroquery` and `astropy` to download a handful of spectra from SDSS:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from astroquery.sdss import SDSS\n", | ||
"from astropy import coordinates as coords\n", | ||
"import astropy.units as u\n", | ||
"import nested_pandas as npd\n", | ||
"\n", | ||
"# Query SDSS for a set of objects with spectra\n", | ||
"pos = coords.SkyCoord(\"0h8m10.63s +14d50m23.3s\", frame=\"icrs\")\n", | ||
"xid = SDSS.query_region(pos, radius=3 * u.arcmin, spectro=True)\n", | ||
"xid_ndf = npd.NestedFrame(xid.to_pandas())\n", | ||
"xid_ndf" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"This initial query returns a set of objects with spectra (as specified by the `spectro=True` flag). To actually retrieve the spectra, we can do the following:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Query SDSS for the corresponding spectra\n", | ||
"sp = SDSS.get_spectra(matches=xid)\n", | ||
"sp" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"The result is a list of FITS formatted data. From this point there are a few ways that we could move towards a nested-pandas representation. The most straightforward is to build a \"flat\" spectra table from all the objects, where we gather the information from each spectrum into a single combined table." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"\n", | ||
"# Build a flat spectrum dataframe\n", | ||
"\n", | ||
"# Initialize some empty arrays to hold the flat data\n", | ||
"wave = np.array([])\n", | ||
"flux = np.array([])\n", | ||
"err = np.array([])\n", | ||
"index = np.array([])\n", | ||
"# Loop over each spectrum, adding it's data to the arrays\n", | ||
"for i, hdu in enumerate(sp):\n", | ||
" wave = np.append(wave, 10 ** hdu[\"COADD\"].data.loglam) # * u.angstrom\n", | ||
" flux = np.append(flux, hdu[\"COADD\"].data.flux * 1e-17) # * u.erg/u.second/u.centimeter**2/u.angstrom\n", | ||
" err = np.append(err, 1 / hdu[\"COADD\"].data.ivar * 1e-17) # * flux.unit\n", | ||
"\n", | ||
" # We'll need to set an index to keep track of which rows correspond\n", | ||
" # to which object\n", | ||
" index = np.append(index, i * np.ones(len(hdu[\"COADD\"].data.loglam)))\n", | ||
"\n", | ||
"# Build a NestedFrame from the arrays\n", | ||
"flat_spec = npd.NestedFrame(dict(wave=wave, flux=flux, err=err), index=index.astype(np.int8))\n", | ||
"flat_spec" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"From here, we can simply nest our flat table within our original query result:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"spec_ndf = xid_ndf.add_nested(flat_spec, \"coadd_spectrum\").set_index(\"objid\")\n", | ||
"spec_ndf" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"And we can see that each object now has the \"coadd_spectrum\" nested column with the full spectrum available." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Look at one of the spectra\n", | ||
"spec_ndf.iloc[1].coadd_spectrum" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"We now have our spectra nested, and can proceed to do any filtering and analysis as normal within nested-pandas.\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import matplotlib.pyplot as plt\n", | ||
"\n", | ||
"# Plot a spectrum\n", | ||
"spec = spec_ndf.iloc[1].coadd_spectrum\n", | ||
"\n", | ||
"plt.plot(spec[\"wave\"], spec[\"flux\"])\n", | ||
"plt.xlabel(\"Wavelength (Å)\")\n", | ||
"plt.ylabel(r\"Flux ($ergs/s/cm^2/Å$)\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.11" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |