-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #45 from h-munakata/muna/amr_gradio
Add AMR gradio demo
- Loading branch information
Showing
1 changed file
with
160 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
""" | ||
Copyright $today.year LY Corporation | ||
LY Corporation licenses this file to you under the Apache License, | ||
version 2.0 (the "License"); you may not use this file except in compliance | ||
with the License. You may obtain a copy of the License at: | ||
https://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT | ||
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the | ||
License for the specific language governing permissions and limitations | ||
under the License. | ||
""" | ||
import os | ||
import torch | ||
import subprocess | ||
import gradio as gr | ||
import librosa | ||
from tqdm import tqdm | ||
from lighthouse.models import * | ||
|
||
# use GPU if available | ||
device = "cuda" if torch.cuda.is_available() else "cpu" | ||
MODEL_NAMES = ['qd_detr'] | ||
FEATURES = ['clap'] | ||
TOPK_MOMENT = 5 | ||
|
||
""" | ||
Helper functions | ||
""" | ||
def load_pretrained_weights(): | ||
file_urls = [] | ||
for model_name in MODEL_NAMES: | ||
for feature in FEATURES: | ||
file_urls.append( | ||
"https://zenodo.org/records/13961029/files/{}_{}_clotho-moment.ckpt".format(feature, model_name) | ||
) | ||
for file_url in tqdm(file_urls): | ||
if not os.path.exists('gradio_demo/weights/' + os.path.basename(file_url)): | ||
command = 'wget -P gradio_demo/weights/ {}'.format(file_url) | ||
subprocess.run(command, shell=True) | ||
|
||
return file_urls | ||
|
||
def flatten(array2d): | ||
list1d = [] | ||
for elem in array2d: | ||
list1d += elem | ||
return list1d | ||
|
||
""" | ||
Model initialization | ||
""" | ||
load_pretrained_weights() | ||
model = QDDETRPredictor('gradio_demo/weights/clap_qd_detr_clotho-moment.ckpt', device=device, feature_name='clap') | ||
|
||
""" | ||
Gradio functions | ||
""" | ||
def audio_upload(audio): | ||
if audio is None: | ||
model.audio_feats = None | ||
yield gr.update(value="Removed the audio", visible=True) | ||
else: | ||
yield gr.update(value="Processing the audio. Wait for a minute...", visible=True) | ||
model.encode_audio(audio) | ||
yield gr.update(value="Finished audio processing!", visible=True) | ||
|
||
def model_load(radio): | ||
if radio is not None: | ||
yield gr.update(value="Loading new model. Wait for a minute...", visible=True) | ||
global model | ||
feature, model_name = radio.split('+') | ||
feature, model_name = feature.strip(), model_name.strip() | ||
|
||
if model_name == 'qd_detr': | ||
model_class = QDDETRPredictor | ||
else: | ||
raise gr.Error("Select from the models") | ||
|
||
model = model_class('gradio_demo/weights/{}_{}_clotho-moment.ckpt'.format(feature, model_name), | ||
device=device, feature_name='{}'.format(feature)) | ||
yield gr.update(value="Model loaded: {}".format(radio), visible=True) | ||
|
||
def predict(textbox, line, gallery): | ||
prediction = model.predict(textbox) | ||
if prediction is None: | ||
raise gr.Error('Upload the audio before pushing the `Retrieve moment` button.') | ||
else: | ||
mr_results = prediction['pred_relevant_windows'] | ||
|
||
buttons = [] | ||
for i, pred in enumerate(mr_results[:TOPK_MOMENT]): | ||
buttons.append(gr.Button(value='moment {}: [{}, {}] Score: {}'.format(i+1, pred[0], pred[1], pred[2]), visible=True)) | ||
|
||
return buttons | ||
|
||
|
||
def show_trimmed_audio(audio, button): | ||
s, sr = librosa.load(audio, sr=None) | ||
_seconds = button.split(': [')[1].split(']')[0].split(', ') | ||
start_sec = float(_seconds[0]) | ||
end_sec = float(_seconds[1]) | ||
start_frame = int(start_sec * sr) | ||
end_frame = int(end_sec * sr) | ||
|
||
return gr.Audio((sr, s[start_frame:end_frame]), interactive=False, visible=True) | ||
|
||
|
||
def main(): | ||
title = """# Audio Moment Retrieval Demo""" | ||
|
||
with gr.Blocks(theme=gr.themes.Soft()) as demo: | ||
gr.Markdown(title) | ||
|
||
with gr.Row(): | ||
with gr.Column(): | ||
with gr.Group(): | ||
gr.Markdown("## Model selection") | ||
radio_list = flatten([["{} + {}".format(feature, model_name) for model_name in MODEL_NAMES] for feature in FEATURES]) | ||
radio = gr.Radio(radio_list, label="models", value="clap + qd_detr", info="Which model do you want to use?") | ||
load_status_text = gr.Textbox(label='Model load status', value='Model loaded: clap + qd_detr') | ||
|
||
with gr.Group(): | ||
gr.Markdown("## Audio and query") | ||
audio_input = gr.Audio(type='filepath') | ||
output = gr.Textbox(label='Audio processing progress') | ||
query_input = gr.Textbox(label='query') | ||
button = gr.Button("Retrieve moment", variant="primary") | ||
|
||
with gr.Column(): | ||
with gr.Group(): | ||
gr.Markdown("## Retrieved moments") | ||
|
||
button_1 = gr.Button(value='moment 1', visible=False, elem_id='result_0') | ||
button_2 = gr.Button(value='moment 2', visible=False, elem_id='result_1') | ||
button_3 = gr.Button(value='moment 3', visible=False, elem_id='result_2') | ||
button_4 = gr.Button(value='moment 4', visible=False, elem_id='result_3') | ||
button_5 = gr.Button(value='moment 5', visible=False, elem_id='result_4') | ||
result = gr.Audio(None, label='Trimmed audio', interactive=False, visible=False) | ||
|
||
button_1.click(show_trimmed_audio, inputs=[audio_input, button_1], outputs=[result]) | ||
button_2.click(show_trimmed_audio, inputs=[audio_input, button_2], outputs=[result]) | ||
button_3.click(show_trimmed_audio, inputs=[audio_input, button_3], outputs=[result]) | ||
button_4.click(show_trimmed_audio, inputs=[audio_input, button_4], outputs=[result]) | ||
button_5.click(show_trimmed_audio, inputs=[audio_input, button_5], outputs=[result]) | ||
|
||
audio_input.change(audio_upload, inputs=[audio_input], outputs=output) | ||
radio.select(model_load, inputs=[radio], outputs=load_status_text) | ||
|
||
button.click(predict, | ||
inputs=[query_input], | ||
outputs=[button_1, button_2, button_3, button_4, button_5]) | ||
|
||
demo.launch() | ||
|
||
if __name__ == "__main__": | ||
main() |