This is the official Python implementation repository for a paper entitled "Adaptive Confidence Threshold for ByteTrack in Multi-Object Tracking", ICCAIS 2023 (arXiv 2312.01650).
- BYTETrack
- OC-SORT
- FairMOT
- SORT
- CMC (Camera Motion Compensation)
- HOTA Evaluation
-
Set Up Python Environment
- Create a
conda
Python environment and activate it:conda create --name virtualenv python==3.8.0 conda activate virtualenv
- lone this repository recursively to have pybind11
git clone --recursive https://github.com/linh-gist/AdaptConfByteTrack.git
- Install Packages
numpy==1.23.1 opencv-python==4.9.0.80 loguru==0.7.2 scipy==1.10.1 lap==0.5.12 cython_bbox==0.1.5 matplotlib==3.5.3 filterpy==1.4.5 motmetrics==1.4.0 openpyxl==3.1.5 pycocotools==2.0.7 tabulate==0.9.0 # git clone https://github.com/JonathonLuiten/TrackEval.git # cd TrackEval, python setup.py build develop
- Create a
-
Prepare Data
- Datasets:
- MOT16, MOT17, MOT20
- You can also run with your custom dataset but need a detector
- Datasets:
-
Run the Tracking Demo
- Change parameters in
make_parser()
intrack.py
such asuse_gmc
,data_dir
(MOTChallenge GT data) - Run
python track.py
- Change parameters in
If you find this project useful in your research, please consider citing by:
@inproceedings{van2023adaptive,
title={Adaptive Confidence Threshold for ByteTrack in Multi-Object Tracking},
author={Linh Van Ma and Muhammad Ishfaq Hussain and JongHyun Park and Jeongbae Kim and Moongu Jeon},
booktitle={2023 12th International Conference on Control, Automation and Information Sciences (ICCAIS)},
pages={370--374},
year={2023},
organization={IEEE}
}
A part of the code is borrowed from ByteTrack, OC-SORT, BoT-SORT, FairMOT and SORT. Thanks for their wonderful works.