Skip to content

ljw-struggle/MImage-RetinaUNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

59 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

UNet for Retina Vessel Segmentation

UNet for retina vessel segmentation.

Usage

We run the code on Ubuntu 18.04 LTS with a GTX 1080ti GPU.

Requirement

Python (3.7.3) | Tensorflow (2.0.0) | CUDA (10.0) | cuDNN (7.6.0)

Data

You can download the datasets from here. And then move the files into the ./data/ folder.

Preprocess

Because of my RAM limited, I firstly transform the train.mat file to .tfrecord files.

python preprocess.py

Train

Then you can train the model initially.

CUDA_VISIBLE_DEVICES=0 python main.py -e train -c ./config/config_0.ini

Test

When you have trained successfully, you can evaluate the model.

CUDA_VISIBLE_DEVICES=0 python main.py -e test -c ./config/config_0.ini

Result

Metric Value
Area under ROC curve 0.9791076715589634
Area under PR curve 0.9096035722442897

For threshold: 0.5

Metric Value
Jaccard similarity score 0.6899763444446503
F1 score (F-measure) 0.8165514821704634
Accuracy 0.9557572337407614
Precision 0.8645987922457612
Recall 0.7735631845636364

REFERENCE

https://github.com/orobix/retina-unet

About

UNet for Medical Image Segmentation of Retina Vessel.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages