Learning Multiaspect Traffic Couplings by Multirelational Graph Attention Networks for Traffic Prediction
Data
Usage
-
Train
-
Docker container (recommended)
# PEMSD3 docker run -it --rm --gpus=all --shm-size=512m -v /path/to/checkpoints:/ms-gat/checkpoints luokn/ms-gat -d pemsd3 -i 1,2,3,24 -w 8 # PEMSD4 docker run -it --rm --gpus=all --shm-size=512m -v /path/to/checkpoints:/ms-gat/checkpoints luokn/ms-gat -d pemsd4 -w 8 # PEMSD7 docker run -it --rm --gpus=all --shm-size=512m -v /path/to/checkpoints:/ms-gat/checkpoints luokn/ms-gat -d pemsd7 -b 32 -w 8 # PEMSD8 docker run -it --rm --gpus=all --shm-size=512m -v /path/to/checkpoints:/ms-gat/checkpoints luokn/ms-gat -d pemsd8 -w 8
-
Physical machine:
# PEMSD3 python3 src/main.py -d pemsd3 -o checkpoints/pemsd3 -i 1,2,3,24 -w 8 # PEMSD4 python3 src/main.py -d pemsd4 -o checkpoints/pemsd4 -w 8 # PEMSD7 python3 src/main.py -d pemsd7 -o checkpoints/pemsd7 -b 32 -w 8 # PEMSD8 python3 src/main.py -d pemsd8 -o checkpoints/pemsd8 -w 8
-
-
Evaluate
python3 src/main.py --eval -d pemsd4 -o checkpoints/pemsd4 -c checkpoints/pemsd4/xx_xxx.xx.pkl
Checkpoints
- PEMSD3: MAE = 15.60 MAPE = 16.36% RMSE = 26.36
- PEMSD4: MAE = 19.59 MAPE = 13.34% RMSE = 31.58
- PEMSD7: MAE = 20.44 MAPE = 8.85% RMSE = 34.11
- PEMSD8: MAE = 14.58 MAPE = 10.10% RMSE = 23.94
Citation
@ARTICLE{9780244,
author ={Huang, Jing and Luo, Kun and Cao, Longbing and Wen, Yuanqiao and Zhong, Shuyuan},
journal ={IEEE Transactions on Intelligent Transportation Systems},
title ={Learning Multiaspect Traffic Couplings by Multirelational Graph Attention Networks for Traffic Prediction},
year ={2022},
volume ={},
number ={},
pages ={1-15},
doi ={10.1109/TITS.2022.3173689}
}