Skip to content

Commit

Permalink
simple proof
Browse files Browse the repository at this point in the history
  • Loading branch information
Marek Petrik committed Dec 29, 2024
1 parent ce95314 commit 7165d67
Showing 1 changed file with 30 additions and 9 deletions.
39 changes: 30 additions & 9 deletions blueprint/src/content.tex
Original file line number Diff line number Diff line change
Expand Up @@ -137,6 +137,25 @@ \subsection{Basic Properties}
Immediate from \cref{thm:exp-zero}
\end{proof}

\begin{theorem}
Suppose that $\tilde{b}, \tilde{c} \colon \Omega \to \mathcal{B}$, then
\[
\PP \left[ \tilde{b} \wedge \tilde{c} \right]
=
\PP \left[ \tilde{b} \mid \tilde{c} \right] \cdot \PP \left[ \tilde{c} \right].
\]
\end{theorem}
\begin{proof} The property holds immediately when $\PP \left[ \tilde{c} \right] = 0$. Assume that $\PP \left[ \tilde{c} \right] > 0$. Then:
\begin{align*}
\PP \left[ \tilde{b} \wedge \tilde{c} \right]
&= \E \left[ \I(\tilde{b} \wedge \tilde{c}) \right] \\
&= \E \left[ \I(\tilde{b}) \cdot \I(\tilde{c}) \right] \\
&= \frac{1}{\PP \left[ \tilde{c} \right]}\E \left[ \I(\tilde{b}) \cdot \I(\tilde{c}) \right] \cdot \PP \left[ \tilde{c} \right] \\
&= \E \left[ \I(\tilde{b}) \mid \tilde{c} \right] \cdot \PP \left[ \tilde{c} \right] \\
&= \PP \left[ \tilde{b} \mid \tilde{c} \right] \cdot \PP \left[ \tilde{c} \right].
\end{align*}
\end{proof}

\subsection{Unconscious Statistician Laws}

\begin{theorem} \label{thm:unc_stat_cond}
Expand All @@ -156,23 +175,25 @@ \subsection{Unconscious Statistician Laws}
\subsection{Total Expectation and Probability}

\begin{theorem}[Law of Total Expectation] \label{thm:total_expect}
Let $\tilde{x} \colon \Omega \to \Real$ and $\tilde{y} \colon \Omega \to \mathcal{Y}$ be random variables defined on a probability space $P = (\Omega, p)$ and a finite set $\mathcal{Y}$. Then:
Let $\tilde{x} \colon \Omega \to \mathcal{X}$ and $\tilde{y} \colon \Omega \to \mathcal{Y}$ be random variables defined on a probability space $P = (\Omega, p)$ and a finite set $\mathcal{Y}$. Then:
\[
\E\left[\E\left[\tilde{x} \mid \tilde{y}\right]\right] = \E \left[ \tilde{x} \right].
\]
\lean{Finprob.total_expectation}
\end{theorem}
\begin{proof}[Proof 1: Simpler properties]

\end{proof}
\begin{proof}[Proof 2: More advanced properties]
\begin{proof}
\begin{align*}
\E\left[\E\left[\tilde{x} \mid \tilde{y}\right]\right]
&= \sum_{y\in \mathcal{Y}} \E\left[\tilde{x} \mid \tilde{y} = y \right] \PP\left[ \tilde{y} = y \right] \\
&= \sum_{y\in \mathcal{Y}} \E\left[\tilde{x} \mid \tilde{y} = y \right] \PP\left[ \tilde{y} = y \right] \\
\E\left[\E\left[\tilde{x} \mid \tilde{y}\right] \right]
&= \sum_{y\in \mathcal{Y}} \E\left[\tilde{x} \mid \tilde{y} = y \right] \cdot \PP\left[ \tilde{y} = y \right] \\
&= \sum_{y\in \mathcal{Y}} \sum_{x\in \mathcal{X}} x \cdot \PP\left[\tilde{x} = x \mid \tilde{y} = y \right] \cdot \PP\left[ \tilde{y} = y \right] \\
&= \sum_{y\in \mathcal{Y}} \sum_{x\in \mathcal{X}} x \cdot \PP\left[\tilde{x} = x, \tilde{y} = y \right] \\
&= \sum_{x\in \mathcal{X}} x \cdot \sum_{y\in \mathcal{Y}} \PP\left[\tilde{x} = x, \tilde{y} = y \right] \\
&= \sum_{x\in \mathcal{X}} x \cdot \PP\left[\tilde{x} = x \right] = \E \left[ \tilde{x} \right].
\end{align*}
\end{proof}

\begin{proof}[Alternate Proof]

\end{proof}

\section{Markov Decision Process and Histories}

Expand Down

0 comments on commit 7165d67

Please sign in to comment.