Skip to content

Commit

Permalink
more proofs
Browse files Browse the repository at this point in the history
  • Loading branch information
Marek Petrik committed Jan 1, 2025
1 parent 76b42de commit d90d132
Showing 1 changed file with 37 additions and 15 deletions.
52 changes: 37 additions & 15 deletions blueprint/src/content.tex
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@ \subsection{Definitions}
\end{definition}

\begin{definition} \label{def:expect-cnd}
The \emph{conditional expectation} of a $\tilde{x} \colon \Omega \to \Real$ conditioned on $\tilde{c} \colon \Omega \to \mathcal{B}$ is defined as
The \emph{conditional expectation} of $\tilde{x} \colon \Omega \to \Real$ conditioned on $\tilde{c} \colon \Omega \to \mathcal{B}$ is defined as
\[
\E \left[ \tilde{x} \mid \tilde{b} \right] :=
\frac{1}{\PP[\tilde{c}]} \sum_{\omega \in \Omega } p(\omega ) \cdot \tilde{x}(\omega) \cdot \I(\tilde{c}(\omega)),
Expand Down Expand Up @@ -174,39 +174,65 @@ \subsection{The Unconscious Statistician Laws}
=
\sum_{x\in \tilde{x}(\Omega)} \PP \left[ \tilde{x} = x \right] \cdot x.
\]
\lean{Finprob.exp_sum_val}
\end{theorem}
\begin{proof}
Let $\mathcal{X} := \tilde{x}(\Omega)$, which is a finite set. Then:
\begin{align*}
\E \left[ \tilde{x} \right]
&= \sum_{\omega \in \Omega } p(\omega ) \cdot \tilde{x}(\omega) && \text{\cref{def:expect}} \\
&=
&= \sum_{\omega \in \Omega } \sum_{x\in \mathcal{X}} p(\omega ) \cdot \tilde{x}(\omega) \cdot \I(x = \tilde{x}(\omega)) && \text{??} \\
&= \sum_{\omega \in \Omega } \sum_{x\in \mathcal{X}} p(\omega ) \cdot x \cdot \I(x = \tilde{x}(\omega)) && \text{??} \\
&= \sum_{x\in \mathcal{X}} x \cdot \sum_{\omega \in \Omega } p(\omega ) \cdot \I(x = \tilde{x}(\omega)) && \text{??}\\
&= \sum_{x\in \mathcal{X}} x \cdot \E \left[ \I(x = \tilde{x}(\omega)) \right] && \text{\cref{def:expect}} \\
&= \sum_{x\in \mathcal{X}} x \cdot \PP \left[x = \tilde{x}(\omega) \right]. && \text{\cref{def:probability}}
\end{align*}
\end{proof}

\begin{theorem} \label{thm:unc_stat_cond}
Let $\tilde{x} \colon \Omega \to \Real$ and $\tilde{y} \colon \Omega \to \mathcal{Y}$ be random variables defined on a probability space $P = (\Omega, p)$ and a finite $\mathcal{Y}$. Then:
The following theorem generalizes the theorem above.
\begin{theorem}\label{thm:exp-sum-val-cnd}
Let $\tilde{x} \colon \Omega \to \Real$ and $\tilde{b} \colon \Omega \to \mathcal{Y}$ be random variables. Then:
\[
\E \left[ \tilde{x} \mid \tilde{b} \right]
=
\sum_{x\in \tilde{x}(\Omega)} \PP \left[ \tilde{x} = x \mid \tilde{b} \right] \cdot x.
\]
\lean{Finprob.exp_sum_val_cnd}
\end{theorem}

\begin{theorem} \label{thm:exp-sum-val-cnd-rv}
Let $\tilde{x} \colon \Omega \to \Real$ and $\tilde{y} \colon \Omega \to \mathcal{Y}$ be random variables with $\mathcal{Y}$ finite. Then:
\[
\E \left[ \E \left[ \tilde{x} \mid \tilde{y} \right] \right]
=
\sum_{y\in \mathcal{Y}} \E \left[ \tilde{x} \mid \tilde{y} = y \right] \cdot
\PP\left[ \tilde{y} = y \right].
\]
\lean{Finprob.unconscious_statistician_cnd}
\lean{Finprob.exp_sum_val_cnd_rv}
\end{theorem}
\begin{proof}

\end{proof}


\subsection{Total Expectation and Probability}

\begin{theorem}[Law of Total Expectation] \label{thm:total_expect}
Let $\tilde{x} \colon \Omega \to \mathcal{X}$ and $\tilde{y} \colon \Omega \to \mathcal{Y}$ be random variables defined on a probability space $P = (\Omega, p)$ and a finite set $\mathcal{Y}$. Then:

\begin{theorem}[Law of Total Probability] \label{thm:total-probability}
Let $\tilde{b} \colon \Omega \to \mathcal{B}$ and $\tilde{y} \colon \Omega \to \mathcal{Y}$ be random variables with a finite set $\mathcal{Y}$. Then:
\[
\sum_{y\in \mathcal{Y}} \PP\left[\tilde{b} \wedge \tilde{y} = y \right] = \PP \left[ \tilde{b} \right].
\]
\lean{Finprob.total_expectation}
\end{theorem}

\begin{theorem}[Law of Total Expectation] \label{thm:total_expectation}
Let $\tilde{x} \colon \Omega \to \mathcal{X}$ and $\tilde{y} \colon \Omega \to \mathcal{Y}$ be random variables with a finite set $\mathcal{Y}$. Then:
\[
\E\left[\E\left[\tilde{x} \mid \tilde{y}\right]\right] = \E \left[ \tilde{x} \right].
\]
\lean{Finprob.total_expectation}
\end{theorem}
\begin{proof}

The following proof is simpler but may require properties that follow from this result.
\begin{proof}[Alternate proof]
\begin{align*}
\E\left[\E\left[\tilde{x} \mid \tilde{y}\right] \right]
&= \sum_{y\in \mathcal{Y}} \E\left[\tilde{x} \mid \tilde{y} = y \right] \cdot \PP\left[ \tilde{y} = y \right] \\
Expand All @@ -215,14 +241,10 @@ \subsection{Total Expectation and Probability}
&= \sum_{x\in \mathcal{X}} x \cdot \sum_{y\in \mathcal{Y}} \PP\left[\tilde{x} = x, \tilde{y} = y \right] \\
&= \sum_{x\in \mathcal{X}} x \cdot \PP\left[\tilde{x} = x \right] = \E \left[ \tilde{x} \right].
\end{align*}
\end{proof}
\begin{proof}[Alternate Proof]

\end{proof}

\section{Markov Decision Process and Histories}

The basic probability space as defined as follows.
\begin{definition}[Markov Decision Process]
A Markov decision process $M := (\mathcal{S}, \mathcal{A}, p, r)$ consists of a finite set of states $\mathcal{S}$, a finite set of actions $\mathcal{A}$, transition function $p\colon \mathcal{S} \times \mathcal{A} \times \Delta(\mathcal{S})$, and a reward function $r \colon \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \Real$.
\lean{MDP} \leanok
Expand Down

0 comments on commit d90d132

Please sign in to comment.