Skip to content

A Heterogeneous Benchmark for Information Retrieval. Easy to use, evaluate your models across 15+ diverse IR datasets.

License

Notifications You must be signed in to change notification settings

martin-gaievski/info-retrieval-test

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

GitHub release Build License Open In Colab Downloads Downloads

🍻 What is it?

BEIR is a heterogeneous benchmark containing diverse IR tasks. It also provides a common and easy framework for evaluation of your NLP-based retrieval models within the benchmark.

For an overview, checkout our new wiki page: https://github.com/beir-cellar/beir/wiki.

For models and datasets, checkout out Hugging Face (HF) page: https://huggingface.co/BeIR.

For Leaderboard, checkout out Eval AI page: https://eval.ai/web/challenges/challenge-page/1897.

For more information, checkout out our publications:

🍻 Installation

Install via pip:

pip install beir

If you want to build from source, use:

$ git clone https://github.com/beir-cellar/beir.git
$ cd beir
$ pip install -e .

Tested with python versions 3.6 and 3.7

🍻 Features

  • Preprocess your own IR dataset or use one of the already-preprocessed 17 benchmark datasets
  • Wide settings included, covers diverse benchmarks useful for both academia and industry
  • Includes well-known retrieval architectures (lexical, dense, sparse and reranking-based)
  • Add and evaluate your own model in a easy framework using different state-of-the-art evaluation metrics

🍻 Quick Example

For other example codes, please refer to our Examples and Tutorials Wiki page.

from beir import util, LoggingHandler
from beir.retrieval import models
from beir.datasets.data_loader import GenericDataLoader
from beir.retrieval.evaluation import EvaluateRetrieval
from beir.retrieval.search.dense import DenseRetrievalExactSearch as DRES

import logging
import pathlib, os

#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S',
                    level=logging.INFO,
                    handlers=[LoggingHandler()])
#### /print debug information to stdout

#### Download scifact.zip dataset and unzip the dataset
dataset = "scifact"
url = "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/{}.zip".format(dataset)
out_dir = os.path.join(pathlib.Path(__file__).parent.absolute(), "datasets")
data_path = util.download_and_unzip(url, out_dir)

#### Provide the data_path where scifact has been downloaded and unzipped
corpus, queries, qrels = GenericDataLoader(data_folder=data_path).load(split="test")

#### Load the SBERT model and retrieve using cosine-similarity
model = DRES(models.SentenceBERT("msmarco-distilbert-base-tas-b"), batch_size=16)
retriever = EvaluateRetrieval(model, score_function="dot") # or "cos_sim" for cosine similarity
results = retriever.retrieve(corpus, queries)

#### Evaluate your model with NDCG@k, MAP@K, Recall@K and Precision@K  where k = [1,3,5,10,100,1000] 
ndcg, _map, recall, precision = retriever.evaluate(qrels, results, retriever.k_values)

🍻 Available Datasets

Command to generate md5hash using Terminal: md5sum filename.zip.

You can view all datasets available here or on Hugging Face.

Dataset Website BEIR-Name Public? Type Queries Corpus Rel D/Q Down-load md5
MSMARCO Homepage msmarco βœ… train
dev
test
6,980 8.84M 1.1 Link 444067daf65d982533ea17ebd59501e4
TREC-COVID Homepage trec-covid βœ… test 50 171K 493.5 Link ce62140cb23feb9becf6270d0d1fe6d1
NFCorpus Homepage nfcorpus βœ… train
dev
test
323 3.6K 38.2 Link a89dba18a62ef92f7d323ec890a0d38d
BioASQ Homepage bioasq ❌ train
test
500 14.91M 4.7 No How to Reproduce?
NQ Homepage nq βœ… train
test
3,452 2.68M 1.2 Link d4d3d2e48787a744b6f6e691ff534307
HotpotQA Homepage hotpotqa βœ… train
dev
test
7,405 5.23M 2.0 Link f412724f78b0d91183a0e86805e16114
FiQA-2018 Homepage fiqa βœ… train
dev
test
648 57K 2.6 Link 17918ed23cd04fb15047f73e6c3bd9d9
Signal-1M(RT) Homepage signal1m ❌ test 97 2.86M 19.6 No How to Reproduce?
TREC-NEWS Homepage trec-news ❌ test 57 595K 19.6 No How to Reproduce?
Robust04 Homepage robust04 ❌ test 249 528K 69.9 No How to Reproduce?
ArguAna Homepage arguana βœ… test 1,406 8.67K 1.0 Link 8ad3e3c2a5867cdced806d6503f29b99
Touche-2020 Homepage webis-touche2020 βœ… test 49 382K 19.0 Link 46f650ba5a527fc69e0a6521c5a23563
CQADupstack Homepage cqadupstack βœ… test 13,145 457K 1.4 Link 4e41456d7df8ee7760a7f866133bda78
Quora Homepage quora βœ… dev
test
10,000 523K 1.6 Link 18fb154900ba42a600f84b839c173167
DBPedia Homepage dbpedia-entity βœ… dev
test
400 4.63M 38.2 Link c2a39eb420a3164af735795df012ac2c
SCIDOCS Homepage scidocs βœ… test 1,000 25K 4.9 Link 38121350fc3a4d2f48850f6aff52e4a9
FEVER Homepage fever βœ… train
dev
test
6,666 5.42M 1.2 Link 5a818580227bfb4b35bb6fa46d9b6c03
Climate-FEVER Homepage climate-fever βœ… test 1,535 5.42M 3.0 Link 8b66f0a9126c521bae2bde127b4dc99d
SciFact Homepage scifact βœ… train
test
300 5K 1.1 Link 5f7d1de60b170fc8027bb7898e2efca1

🍻 Additional Information

We also provide a variety of additional information in our Wiki page. Please refer to these pages for the following:

Quick Start

Datasets

Models

Metrics

Miscellaneous

🍻 Disclaimer

Similar to Tensorflow datasets or Hugging Face's datasets library, we just downloaded and prepared public datasets. We only distribute these datasets in a specific format, but we do not vouch for their quality or fairness, or claim that you have license to use the dataset. It remains the user's responsibility to determine whether you as a user have permission to use the dataset under the dataset's license and to cite the right owner of the dataset.

If you're a dataset owner and wish to update any part of it, or do not want your dataset to be included in this library, feel free to post an issue here or make a pull request!

If you're a dataset owner and wish to include your dataset or model in this library, feel free to post an issue here or make a pull request!

🍻 Citing & Authors

If you find this repository helpful, feel free to cite our publication BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models:

@inproceedings{
    thakur2021beir,
    title={{BEIR}: A Heterogeneous Benchmark for Zero-shot Evaluation of Information Retrieval Models},
    author={Nandan Thakur and Nils Reimers and Andreas R{\"u}ckl{\'e} and Abhishek Srivastava and Iryna Gurevych},
    booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)},
    year={2021},
    url={https://openreview.net/forum?id=wCu6T5xFjeJ}
}

If you use any baseline score from the BEIR leaderboard, feel free to cite our publication Resources for Brewing BEIR: Reproducible Reference Models and an Official Leaderboard

@misc{kamalloo2023resources,
      title={Resources for Brewing BEIR: Reproducible Reference Models and an Official Leaderboard}, 
      author={Ehsan Kamalloo and Nandan Thakur and Carlos Lassance and Xueguang Ma and Jheng-Hong Yang and Jimmy Lin},
      year={2023},
      eprint={2306.07471},
      archivePrefix={arXiv},
      primaryClass={cs.IR}
}

The main contributors of this repository are:

Contact person: Nandan Thakur, nandant@gmail.com

Don't hesitate to send us an e-mail or report an issue, if something is broken (and it shouldn't be) or if you have further questions.

This repository contains experimental software and is published for the sole purpose of giving additional background details on the respective publication.

🍻 Collaboration

The BEIR Benchmark has been made possible due to a collaborative effort of the following universities and organizations:

🍻 Contributors

Thanks go to all these wonderful collaborations for their contribution towards the BEIR benchmark:


Nandan Thakur

Nils Reimers

Iryna Gurevych

Jimmy Lin

Andreas RΓΌcklΓ©

Abhishek Srivastava

About

A Heterogeneous Benchmark for Information Retrieval. Easy to use, evaluate your models across 15+ diverse IR datasets.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%