[Paper][Supplementary][Project Page][Poster][Data]
This is the official code release for our ECCV 2024 paper
"Multimodal Cross-Domain Few-Shot Learning for Egocentric Action Recognition".
# Create a virtual environment
python3 -m venv mm-cdfsl
source mm-cdfsl/bin/activate
# Install the dependencies
pip install -r requirements.txt
You can find the train/val split files for all three target datasets in cdfsl
folders.
Please follow the data structure as detailed in DATA_STRUCTURE.md.
You can download the pre-processed data from the hub.
You can brouse the checkpoints of pre-trained model, comparison methods, and our models in this folder or directly download from the following links.
Method | Source Dataset | Target Dataset | Modality | Ckpt |
---|---|---|---|---|
VideoMAE | Kinetics-400 | - | RGB | checkpoint |
VideoMAE | Ego4D | - | RGB | checkpoint |
VideoMAE w/ classifier | Ego4D | EPIC | RGB | checkpoint |
VideoMAE w/ classifier | Ego4D | EPIC | flow | checkpoint |
VideoMAE w/ classifier | Ego4D | EPIC | pose | checkpoint |
VideoMAE w/ classifier | Ego4D | MECCANO | RGB | checkpoint |
VideoMAE w/ classifier | Ego4D | MECCANO | flow | checkpoint |
VideoMAE w/ classifier | Ego4D | MECCANO | pose | checkpoint |
VideoMAE w/ classifier | Ego4D | WEAR | RGB | checkpoint |
VideoMAE w/ classifier | Ego4D | WEAR | flow | checkpoint |
VideoMAE w/ classifier | Ego4D | WEAR | pose | checkpoint |
Method | Source Dataset | Target Dataset | Modality | Ckpt |
---|---|---|---|---|
STARTUP++ | Ego4D | EPIC | RGB | checkpoint |
STARTUP++ | Ego4D | MECCANO | RGB | checkpoint |
STARTUP++ | Ego4D | WEAR | RGB | checkpoint |
Dynamic Distill++ | Ego4D | EPIC | RGB | checkpoint |
Dynamic Distill++ | Ego4D | MECCANO | RGB | checkpoint |
Dynamic Distill++ | Ego4D | WEAR | RGB | checkpoint |
CDFSL-V | Ego4D | EPIC | RGB | checkpoint |
CDFSL-V | Ego4D | MECCANO | RGB | checkpoint |
CDFSL-V | Ego4D | WEAR | RGB | checkpoint |
Ours | Ego4D | EPIC | RGB, flow, pose | checkpoint |
Ours | Ego4D | MECCANO | RGB, flow, pose | checkpoint |
Ours | Ego4D | WEAR | RGB, flow, pose | checkpoint |
Please make sure that you set modality (e.g., rgb) and dataset (e.g., epic) in configs/trainer/pretrain_trainer.yaml
and confings/data_module/pretrain_data_module.yaml
.
python3 lit_main_pretrain.py train=True test=False
Please make sure that you set dataset (e.g., epic) in confings/data_module/mm_distill_data_module.yaml
.
Also, you need to set the ckpt path of all modalities in configs/trainer/mm_distill_trainer.yaml
.
python3 lit_main_mmdistill.py train=True test=False
To evaluate the model in 5-way 5-shot setting with 600 runs, please run the following command.
python3 lit_main_mmdistill.py train=False test=True data_module.n_way=5 data_module.k_shot=5 data_module.episodes=600
If you use this code for your research, please cite our paper.
@inproceedings{Hatano2024MMCDFSL,
author = {Hatano, Masashi and Hachiuma, Ryo and Fujii, Ryo and Saito, Hideo},
title = {Multimodal Cross-Domain Few-Shot Learning for Egocentric Action Recognition},
booktitle = {European Conference on Computer Vision (ECCV)},
year = {2024},
}