In this repository, we compress PID data via autoencoder
First of all, we split data on train/validation/test and train autoencoder and xgboost
Then, we train GAN on compressed data (with given PIDs) and generate new data
Finally, we compute all accuracies
- Create
./data/
and./data/input/
folder - Add
data.csv
to./data/input/
- Configure
config.py
- Run
run_pipeline.sh
from./scripts/
- Collect results from
./data/output/