Many organizations have migrated their data warehouses to datalake solutions in recent years. With the convergence of the data warehouse and the data lake, a new data management paradigm has emerged that combines the best of 2 approaches: the bottom-up of big data and the top-down of a classic data warehouse.
In this talk, I will explain the current challenges of a datalake and how we can approach a moderm data architecture with the help of pyspark, hudi, delta.io or iceberg. We will see how organize data in a data lake to support real-time processing of applications and analyzes across all varieties of data sets, structured and unstructured, how provides the scale needed to support enterprise-wide digital transformation and creates one unique source of data for multiple audiences.
This repo contains slides and code for Mauro Pelucchi's "Data warehouses meet data lakes" @ PyCON IT 2023 - Florence (IT).
Copyright (c) 2023 Mauro Pelucchi
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.