Skip to content

Using Extreme Value Theory (EVT) to Estimate Value-at-Risk (VaR) and Expected shortfall (ES)

Notifications You must be signed in to change notification settings

maximenc/Extreme-Risk

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Extreme-Risk

Using Extreme Value Theory (EVT) to Estimate Value-at-Risk (VaR) and Expected shortfall (ES) The Peaks-Over-Threshold (POT) model of extreme value theory, and GPD distribution give more accurate description on tail distribution of financial losses.

Simple Usage

import pandas as pd
import numpy as np
import pot


df = pd.read_csv("data/msci1.csv")
df.index = pd.to_datetime(df["Date"], format='%m/%d/%Y')
df = df.drop(['Date'], axis=1)

for col in df.columns.values:
    df[col] = np.log(df[col]) - np.log(df[col].shift(1))
df = df.dropna()

data = -df["Italy"]
#US	UK	Switzerland	Sweden	Spain	Singapore	Norway	Netherlands	Japan	Italy

print(data)


fitted_gpd = pot.gpd_pot(data, tu=0.95, fit="mle")
print(fitted_gpd.Beta, fitted_gpd.Xi)

fitted_gpd = pot.gpd_pot(data, tu=0.95, fit="mom")
print(fitted_gpd.Beta, fitted_gpd.Xi)

fitted_gpd = pot.gpd_pot(data, tu=0.95, fit="pwm")
print(fitted_gpd.Beta, fitted_gpd.Xi)

print(fitted_gpd.quantile(q=0.99))

pot.mean_exc(data)

fitted_gpd.qq_plot()
fitted_gpd.pp_plot()

About

Using Extreme Value Theory (EVT) to Estimate Value-at-Risk (VaR) and Expected shortfall (ES)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages