Skip to content

This repo is the official megengine implementation of the ECCV2022 paper: Efficient One Pass Self-distillation with Zipf's Label Smoothing.

License

Notifications You must be signed in to change notification settings

megvii-research/zipfls

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This repo is the official implementation of the ECCV2022 paper: Efficient One Pass Self-distillation with Zipf's Label Smoothing.

Framework & Comparison

[2022.9] Pytorch Zipf's label smoothing is uploaded! CIFAR, TinyImageNet, ImageNet, INAT-21 are now supported by our training codes.

[2022.7] MegEngine Zipf's label smoothing is uploaded!

Main Results

Method DenseNet121 DenseNet121 ResNet18 ResNet18
Arch CIFAR100 TinyImageNet CIFAR100 TinyImageNet
Pytorch Baseline 77.86±0.26 60.31±0.36 75.51±0.28 56.41±0.20
Pytorch Zipf's LS 79.03±0.32 62.64±0.30 77.38±0.32 59.25±0.20
Megengine Baseline 77.97±0.18 60.78±0.31 75.29±0.29 56.03±0.34
Megengine Zipf's LS 79.85±0.27 62.35±0.32 77.08±0.28 59.01±0.23

Training

train_baseline_cifar100_resnet18:

python3 train.py --ngpus 1 --dataset CIFAR100 --data_dir cifar100_data --arch CIFAR_ResNet18 --loss_lambda 0.0 --alpha 0.0 --dense

train_ZipfsLS_cifar100_resnet18:

python3 train.py --ngpus 1 --dataset CIFAR100 --data_dir cifar100_data --arch CIFAR_ResNet18 --loss_lambda 0.1 --alpha 0.1 --dense

See more examples in Makefile.

Liscense

Zipf's LS is released under the Apache 2.0 license. See LICENSE for details.

About

This repo is the official megengine implementation of the ECCV2022 paper: Efficient One Pass Self-distillation with Zipf's Label Smoothing.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published