Skip to content

Commit

Permalink
Implemented Gemini (#1490) (#1965)
Browse files Browse the repository at this point in the history
  • Loading branch information
into-the-night authored Oct 21, 2024
1 parent d4ffed9 commit 078aa66
Show file tree
Hide file tree
Showing 6 changed files with 309 additions and 1 deletion.
33 changes: 33 additions & 0 deletions docs/components/llms/models/gemini.mdx
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
---
title: Gemini
---

To use Gemini model, you have to set the `GEMINI_API_KEY` environment variable. You can obtain the Gemini API key from the [Google AI Studio](https://aistudio.google.com/app/apikey)

## Usage

```python
import os
from mem0 import Memory

os.environ["OPENAI_API_KEY"] = "your-api-key" # used for embedding model
os.environ["GEMINI_API_KEY"] = "your-api-key"

config = {
"llm": {
"provider": "gemini",
"config": {
"model": "gemini-1.5-flash-latest",
"temperature": 0.2,
"max_tokens": 1500,
}
}
}

m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```

## Config

All available parameters for the `Gemini` config are present in [Master List of All Params in Config](../config).
1 change: 1 addition & 0 deletions docs/components/llms/overview.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ To view all supported llms, visit the [Supported LLMs](./models).
<Card title="Mistral AI" href="/components/llms/models/mistral_ai"></Card>
<Card title="Google AI" href="/components/llms/models/google_ai"></Card>
<Card title="AWS bedrock" href="/components/llms/models/aws_bedrock"></Card>
<Card title="Gemini" href="/components/llms/models/gemini"></Card>
</CardGroup>

## Structured vs Unstructured Outputs
Expand Down
3 changes: 2 additions & 1 deletion docs/mint.json
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,8 @@
"components/llms/models/litellm",
"components/llms/models/mistral_AI",
"components/llms/models/google_AI",
"components/llms/models/aws_bedrock"
"components/llms/models/aws_bedrock",
"components/llms/models/gemini"
]
}
]
Expand Down
154 changes: 154 additions & 0 deletions mem0/llms/gemini.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,154 @@
import os
from typing import Dict, List, Optional

try:
import google.generativeai as genai
from google.generativeai import GenerativeModel
from google.generativeai.types import content_types
except ImportError:
raise ImportError("The 'google-generativeai' library is required. Please install it using 'pip install google-generativeai'.")

from mem0.configs.llms.base import BaseLlmConfig
from mem0.llms.base import LLMBase


class GeminiLLM(LLMBase):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config)

if not self.config.model:
self.config.model = "gemini-1.5-flash-latest"

api_key = self.config.api_key or os.getenv("GEMINI_API_KEY")
genai.configure(api_key=api_key)
self.client = GenerativeModel(model_name=self.config.model)

def _parse_response(self, response, tools):
"""
Process the response based on whether tools are used or not.
Args:
response: The raw response from API.
tools: The list of tools provided in the request.
Returns:
str or dict: The processed response.
"""
if tools:
processed_response = {
"content": content if (content := response.candidates[0].content.parts[0].text) else None,
"tool_calls": [],
}

for part in response.candidates[0].content.parts:
if fn := part.function_call:
processed_response["tool_calls"].append(
{
"name": fn.name,
"arguments": {key:val for key, val in fn.args.items()},
}
)

return processed_response
else:
return response.candidates[0].content.parts[0].text

def _reformat_messages(self, messages : List[Dict[str, str]]):
"""
Reformat messages for Gemini.
Args:
messages: The list of messages provided in the request.
Returns:
list: The list of messages in the required format.
"""
new_messages = []

for message in messages:
if message["role"] == "system":
content = "THIS IS A SYSTEM PROMPT. YOU MUST OBEY THIS: " + message["content"]

else:
content = message["content"]

new_messages.append({"parts": content,
"role": "model" if message["role"] == "model" else "user"})

return new_messages

def _reformat_tools(self, tools: Optional[List[Dict]]):
"""
Reformat tools for Gemini.
Args:
tools: The list of tools provided in the request.
Returns:
list: The list of tools in the required format.
"""

def remove_additional_properties(data):
"""Recursively removes 'additionalProperties' from nested dictionaries."""

if isinstance(data, dict):
filtered_dict = {
key: remove_additional_properties(value)
for key, value in data.items()
if not (key == "additionalProperties")
}
return filtered_dict
else:
return data

new_tools = []
if tools:
for tool in tools:
func = tool['function'].copy()
new_tools.append({"function_declarations":[remove_additional_properties(func)]})

return new_tools
else:
return None

def generate_response(
self,
messages: List[Dict[str, str]],
response_format=None,
tools: Optional[List[Dict]] = None,
tool_choice: str = "auto",
):
"""
Generate a response based on the given messages using Gemini.
Args:
messages (list): List of message dicts containing 'role' and 'content'.
response_format (str or object, optional): Format for the response. Defaults to "text".
tools (list, optional): List of tools that the model can call. Defaults to None.
tool_choice (str, optional): Tool choice method. Defaults to "auto".
Returns:
str: The generated response.
"""

params = {
"temperature": self.config.temperature,
"max_output_tokens": self.config.max_tokens,
"top_p": self.config.top_p,
}

if response_format:
params["response_mime_type"] = "application/json"
params["response_schema"] = list[response_format]
if tool_choice:
tool_config = content_types.to_tool_config(
{"function_calling_config":
{"mode": tool_choice, "allowed_function_names": [tool['function']['name'] for tool in tools] if tool_choice == "any" else None}
})

response = self.client.generate_content(contents = self._reformat_messages(messages),
tools = self._reformat_tools(tools),
generation_config = genai.GenerationConfig(**params),
tool_config = tool_config)

return self._parse_response(response, tools)
1 change: 1 addition & 0 deletions mem0/utils/factory.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ class LlmFactory:
"openai_structured": "mem0.llms.openai_structured.OpenAIStructuredLLM",
"anthropic": "mem0.llms.anthropic.AnthropicLLM",
"azure_openai_structured": "mem0.llms.azure_openai_structured.AzureOpenAIStructuredLLM",
"gemini": "mem0.llms.gemini.GeminiLLM",
}

@classmethod
Expand Down
118 changes: 118 additions & 0 deletions tests/llms/test_gemini_llm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,118 @@
from unittest.mock import Mock, patch

import pytest
from google.generativeai import GenerationConfig
from google.generativeai.types import content_types

from mem0.configs.llms.base import BaseLlmConfig
from mem0.llms.gemini import GeminiLLM


@pytest.fixture
def mock_gemini_client():
with patch("mem0.llms.gemini.GenerativeModel") as mock_gemini:
mock_client = Mock()
mock_gemini.return_value = mock_client
yield mock_client


def test_generate_response_without_tools(mock_gemini_client: Mock):
config = BaseLlmConfig(model="gemini-1.5-flash-latest", temperature=0.7, max_tokens=100, top_p=1.0)
llm = GeminiLLM(config)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello, how are you?"},
]

mock_part = Mock(text="I'm doing well, thank you for asking!")
mock_content = Mock(parts=[mock_part])
mock_message = Mock(content=mock_content)
mock_response = Mock(candidates=[mock_message])
mock_gemini_client.generate_content.return_value = mock_response

response = llm.generate_response(messages)

mock_gemini_client.generate_content.assert_called_once_with(
contents = [
{"parts": "THIS IS A SYSTEM PROMPT. YOU MUST OBEY THIS: You are a helpful assistant.", "role": "user"},
{"parts": "Hello, how are you?", "role": "user"}
],
generation_config = GenerationConfig(temperature=0.7, max_output_tokens=100, top_p=1.0),
tools = None,
tool_config = content_types.to_tool_config(
{"function_calling_config":
{"mode": 'auto', "allowed_function_names": None}
})
)
assert response == "I'm doing well, thank you for asking!"

def test_generate_response_with_tools(mock_gemini_client: Mock):
config = BaseLlmConfig(model="gemini-1.5-flash-latest", temperature=0.7, max_tokens=100, top_p=1.0)
llm = GeminiLLM(config)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Add a new memory: Today is a sunny day."},
]
tools = [
{
"type": "function",
"function": {
"name": "add_memory",
"description": "Add a memory",
"parameters": {
"type": "object",
"properties": {"data": {"type": "string", "description": "Data to add to memory"}},
"required": ["data"],
},
},
}
]

mock_tool_call = Mock()
mock_tool_call.name = "add_memory"
mock_tool_call.args = {"data": "Today is a sunny day."}

mock_part = Mock()
mock_part.function_call = mock_tool_call
mock_part.text="I've added the memory for you."

mock_content = Mock()
mock_content.parts=[mock_part]

mock_message = Mock()
mock_message.content=mock_content

mock_response = Mock(candidates=[mock_message])
mock_gemini_client.generate_content.return_value = mock_response

response = llm.generate_response(messages, tools=tools)

mock_gemini_client.generate_content.assert_called_once_with(
contents = [
{"parts": "THIS IS A SYSTEM PROMPT. YOU MUST OBEY THIS: You are a helpful assistant.", "role": "user"},
{"parts": "Add a new memory: Today is a sunny day.", "role": "user"}
],
generation_config = GenerationConfig(temperature=0.7, max_output_tokens=100, top_p=1.0),
tools = [
{
"function_declarations": [{
"name": "add_memory",
"description": "Add a memory",
"parameters": {
"type": "object",
"properties": {"data": {"type": "string", "description": "Data to add to memory"}},
"required": ["data"]
}
}]
}
],
tool_config = content_types.to_tool_config(
{"function_calling_config":
{"mode": 'auto', "allowed_function_names": None}
})
)

assert response["content"] == "I've added the memory for you."
assert len(response["tool_calls"]) == 1
assert response["tool_calls"][0]["name"] == "add_memory"
assert response["tool_calls"][0]["arguments"] == {"data": "Today is a sunny day."}

0 comments on commit 078aa66

Please sign in to comment.