Skip to content

menicgiulia/MLFoodProcessing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

47 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MLFoodProcessing

Paper: Machine Learning Prediction of the Degree of Food Processing

Authors: G. Menichetti, B. Ravandi, D. Mozaffarian, A-L. Barabasi

DOI: https://doi.org/10.1101/2021.05.22.21257615

Overview of FoodProX and FPro

alt text

System Requirements

Hardware Requirements

All the codes provided require a standard computer with enough RAM to support the operations. For minimal performance, this will be a computer with about 16 GB of RAM and 4 cores. For optimal performance, we recommend a computer with the following specifications:

RAM: 64+ GB

CPU: 16+ cores

Software Requirements

The provided codes have been tested on the following systems:

macOS (12.4)

Windows 10

Software versions used:

  • Python: 3.6.10
  • MATLAB: 2022a
  • R: 3.4.0 (2020-10-10)

Installation Guide

In Python:

pip install pandas
pip install scipy
pip install matplotlib
pip install seaborn
pip install tqdm
pip install joblib
pip install shap
pip install rfpimp
pip install dynamicTreeCut
pip install networkx
pip install pyvis
pip install scikit-learn
pip install imbalanced-learn

Version Numbers for Python Packages

  • pandas: 1.1.5
  • scipy: 1.5.2
  • matplotlib: 3.3.4
  • tqdm: 4.63.0
  • joblib: 0.17.0
  • shap: 0.41.0
  • rfpimp: 1.3.7
  • dynamicTreeCut: 0.1.0
  • networkx: 2.5
  • pyvis: 0.3.1
  • scikit-learn: 0.24.2
  • imbalanced-learn: 0.8.1

R Environment Used in the EWAS Study

> sessionInfo()

R version 4.0.3 (2020-10-10)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 22621)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
 [1] parallel  stats4    grid      stats     graphics  grDevices utils    
 [8] datasets  methods   base     

other attached packages:
 [1] DESeq2_1.28.1               SummarizedExperiment_1.18.2
 [3] DelayedArray_0.14.1         matrixStats_0.57.0         
 [5] Biobase_2.48.0              GenomicRanges_1.40.0       
 [7] GenomeInfoDb_1.24.2         IRanges_2.22.2             
 [9] S4Vectors_0.26.1            BiocGenerics_0.34.0        
[11] jsonlite_1.7.1              readxl_1.3.1               
[13] crayon_1.3.4                testthat_3.0.0             
[15] margins_0.3.23              mfx_1.2-2                  
[17] betareg_3.1-4               MASS_7.3-53                
[19] lmtest_0.9-38               zoo_1.8-8                  
[21] sandwich_3.0-0              survey_4.0                 
[23] Matrix_1.2-18               Hmisc_4.4-1                
[25] ggplot2_3.3.2               Formula_1.2-4              
[27] survival_3.2-7              lattice_0.20-41            
[29] car_3.0-10                  carData_3.0-4              
[31] foreach_1.5.1               dplyr_1.0.2                
[33] broom_0.7.2                 hash_2.2.6.1               
[35] IHW_1.16.0                 

loaded via a namespace (and not attached):
 [1] colorspace_2.0-0       ellipsis_0.3.1         modeltools_0.2-23     
 [4] rio_0.5.16             htmlTable_2.1.0        XVector_0.28.0        
 [7] base64enc_0.1-3        rstudioapi_0.13        bit64_4.0.5           
[10] flexmix_2.3-17         AnnotationDbi_1.50.3   codetools_0.2-16      
[13] splines_4.0.3          geneplotter_1.66.0     knitr_1.30            
[16] annotate_1.66.0        cluster_2.1.0          png_0.1-7             
[19] compiler_4.0.3         backports_1.2.0        htmltools_0.5.0       
[22] tools_4.0.3            gtable_0.3.0           glue_1.4.2            
[25] GenomeInfoDbData_1.2.3 Rcpp_1.0.5             slam_0.1-47           
[28] cellranger_1.1.0       vctrs_0.3.5            iterators_1.0.13      
[31] xfun_0.19              stringr_1.4.0          openxlsx_4.2.3        
[34] lifecycle_0.2.0        XML_3.99-0.5           zlibbioc_1.34.0       
[37] scales_1.1.1           hms_0.5.3              RColorBrewer_1.1-2    
[40] curl_4.3               memoise_1.1.0          gridExtra_2.3         
[43] rpart_4.1-15           latticeExtra_0.6-29    stringi_1.5.3         
[46] RSQLite_2.2.1          genefilter_1.70.0      checkmate_2.0.0       
[49] zip_2.1.1              BiocParallel_1.22.0    rlang_0.4.8           
[52] pkgconfig_2.0.3        bitops_1.0-6           lpsymphony_1.16.0     
[55] purrr_0.3.4            prediction_0.3.14      htmlwidgets_1.5.2     
[58] bit_4.0.4              tidyselect_1.1.0       magrittr_2.0.1        
[61] R6_2.5.0               generics_0.1.0         DBI_1.1.0             
[64] pillar_1.4.6           haven_2.3.1            foreign_0.8-80        
[67] withr_2.3.0            abind_1.4-5            RCurl_1.98-1.2        
[70] nnet_7.3-14            tibble_3.0.4           fdrtool_1.2.15        
[73] jpeg_0.1-8.1           locfit_1.5-9.4         data.table_1.13.2     
[76] blob_1.2.1             forcats_0.5.0          digest_0.6.27         
[79] xtable_1.8-4           tidyr_1.1.2            munsell_0.5.0         
[82] mitools_2.4     

Typical install time on a normal desktop computer for all Python and R packages is less than 10 minutes.