Skip to content

Commit

Permalink
clean README
Browse files Browse the repository at this point in the history
  • Loading branch information
pengzhenghao committed Dec 16, 2024
1 parent 37e27e6 commit 38517a0
Showing 1 changed file with 0 additions and 80 deletions.
80 changes: 0 additions & 80 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -102,27 +102,7 @@ Traffic vehicles can not response to surrounding vchicles if directly replaying
Add argument ```--reactive_traffic``` to use an IDM policy control them and make them reactive.
Press key ```r``` for loading a new scenario, and ```b``` or ```q``` for switching perspective.

[comment]: <> (### LQY: avoid introducing these trivial things )

[comment]: <> (Run the example of procedural generation of a new map as:)

[comment]: <> (```bash)

[comment]: <> (python -m metadrive.examples.procedural_generation)

[comment]: <> (```)

[comment]: <> (*Note that the scripts above can not be run in a headless machine.*)

[comment]: <> (*Please refer to the installation guideline in documentation for more information about how to launch runing in a headless machine.*)

[comment]: <> (Run the following command to draw the generated maps from procedural generation:)

[comment]: <> (```bash)

[comment]: <> (python -m metadrive.examples.draw_maps)

[comment]: <> (```)

### Basic Usage
To build the RL environment in python script, you can simply code in the Farama Gymnasium format as:
Expand Down Expand Up @@ -167,66 +147,6 @@ If you use MetaDrive in your own work, please cite:
}
```

## 🎉 Relevant Projects

**Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization**
\
Zhenghao Peng, Quanyi Li, Chunxiao Liu, Bolei Zhou
\
*NeurIPS 2021*
\
[<a href="https://arxiv.org/pdf/2110.13827.pdf" target="_blank">Paper</a>]
[<a href="https://github.com/decisionforce/CoPO" target="_blank">Code</a>]
[<a href="https://decisionforce.github.io/CoPO" target="_blank">Webpage</a>]
[<a href="https://decisionforce.github.io/CoPO/copo_poster.pdf" target="_blank">Poster</a>]
[<a href="https://youtu.be/sOw43l8lwxE" target="_blank">Talk</a>]
[<a href="https://github.com/metadriverse/metadrive-benchmark/tree/main/MARL" target="_blank">Results&Models</a>]


**Safe Driving via Expert Guided Policy Optimization**
\
Zhenghao Peng*, Quanyi Li*, Chunxiao Liu, Bolei Zhou
\
*Conference on Robot Learning (CoRL) 2021*
\
[<a href="https://arxiv.org/pdf/2110.06831.pdf" target="_blank">Paper</a>]
[<a href="https://github.com/decisionforce/EGPO" target="_blank">Code</a>]
[<a href="https://decisionforce.github.io/EGPO/" target="_blank">Webpage</a>]
[<a href="https://decisionforce.github.io/EGPO/images/egpo_poster.png" target="_blank">Poster</a>]

**Efficient Learning of Safe Driving Policy via Human-AI Copilot Optimization**
\
Quanyi Li*, Zhenghao Peng*, Bolei Zhou
\
*ICLR 2022*
\
[<a href="https://arxiv.org/pdf/2202.10341.pdf" target="_blank">Paper</a>]
[<a href="https://github.com/decisionforce/HACO" target="_blank">Code</a>]
[<a href="https://decisionforce.github.io/HACO/" target="_blank">Webpage</a>]
[<a href="https://github.com/decisionforce/HACO/blob/main/docs/iclr_poster.pdf" target="_blank">Poster</a>]
[<a href="https://youtu.be/PiJv4wtp8T8" target="_blank">Talk</a>]

**Human-AI Shared Control via Policy Dissection**
\
Quanyi Li, Zhenghao Peng, Haibin Wu, Lan Feng, Bolei Zhou
\
*NeurIPS 2022*
\
[<a href="https://arxiv.org/pdf/2206.00152.pdf" target="_blank">Paper</a>]
[<a href="https://github.com/metadriverse/policydissect" target="_blank">Code</a>]
[<a href="https://metadriverse.github.io/policydissect/" target="_blank">Webpage</a>]


And more:


* Yang, Yujie, Yuxuan Jiang, Yichen Liu, Jianyu Chen, and Shengbo Eben Li. "Model-Free Safe Reinforcement Learning through Neural Barrier Certificate." IEEE Robotics and Automation Letters (2023).

* Feng, Lan, Quanyi Li, Zhenghao Peng, Shuhan Tan, and Bolei Zhou. "TrafficGen: Learning to Generate Diverse and Realistic Traffic Scenarios." (**ICRA 2023**)

* Zhenghai Xue, Zhenghao Peng, Quanyi Li, Zhihan Liu, Bolei Zhou. "Guarded Policy Optimization with Imperfect Online Demonstrations." (**ICLR 2023**)



## Acknowledgement

Expand Down

0 comments on commit 38517a0

Please sign in to comment.