Skip to content

Trial for using YOLO v3 with aiortc (WebRTC implementation with Python)

License

Notifications You must be signed in to change notification settings

mganeko/aiortc_yolov3

Repository files navigation

python3 sample for aiortc with YOLO v3

sample for aiortc with darknet YOLO v3 for Python 3

  • aiortc ... WebRTC implementation with Python (GitHub)
  • YOLO v3 ... object detection network on darknet (GitHub)

Usage

with Docker

  • use Docker file here
  • docker build -t your-image-name -f Dockerfile .
  • docker run -d -p 8001:8080 your-image-name
  • open http://local:8001/ with Chrome

by hand (without Docker)

  • clone and build aiortc

  • clone and bulid darknet

  • cd darnekt/, and download https://pjreddie.com/media/files/yolov3-tiny.weights

  • make symbolic link of darknet/libdarknet.so to /usr/lib/libdarknet.so (or where you need)

  • make symbolic link of darknet/cfg/, darknet/data to aiortc/examples/server/

  • make symolic link of yolov3-tiny.weights to aiortc/examples/server/

  • clone this sample

  • copy server_yolo.py, index.html to aiortc/examples/server/

  • cd aiortc/examples/server/

  • python3 server_yolo.py

  • open http://local:8080/ with Chrome

Note

This sample is example to convert between aiortc frame and darknet image. Object detection without GPU is still far from handling realtime video.

License

  • This sample is under the MIT license

About

Trial for using YOLO v3 with aiortc (WebRTC implementation with Python)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published