-
-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
- Loading branch information
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
# Sphinx build info version 1 | ||
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. | ||
config: 699d93486cc716425a834dc90f42cf4c | ||
tags: d77d1c0d9ca2f4c8421862c7c5a0d620 |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
frds.io |
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Large diffs are not rendered by default.
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,298 @@ | ||
================ | ||
GARCH(1,1) - CCC | ||
================ | ||
|
||
Introduction | ||
============ | ||
|
||
The Multivariate GARCH(1,1) model generalizes the univariate :doc:`/algorithms/garch` | ||
framework to multiple time series, capturing not only the conditional variances | ||
but also the conditional covariances between the series. One common form is the | ||
**Constant Conditional Correlation (CCC) model** proposed by Bollerslev (1990). | ||
|
||
.. tip:: Check `Examples`_ section for code guide and comparison to Stata. | ||
|
||
Return equation | ||
--------------- | ||
|
||
The return equation for a :math:`N`-dimensional time series is: | ||
|
||
.. math:: | ||
:label: mv_return_eq | ||
\mathbf{r}_t = \boldsymbol{\mu} + \boldsymbol{\epsilon}_t | ||
Here, :math:`\mathbf{r}_t` is a :math:`N \times 1` vector of returns, and :math:`\boldsymbol{\mu}` is a :math:`N \times 1` vector of mean returns. :math:`\boldsymbol{\epsilon}_t` is the :math:`N \times 1` vector of shock terms. | ||
|
||
Shock equation | ||
-------------- | ||
|
||
The shock term is modelled as: | ||
|
||
.. math:: | ||
:label: mv_shock_eq | ||
\boldsymbol{\epsilon}_t = \mathbf{H}_t^{1/2} \mathbf{z}_t | ||
Here, :math:`\mathbf{H}_t` is a :math:`N \times N` conditional covariance matrix, | ||
:math:`\mathbf{H}_t^{1/2}` is a :math:`N \times N` positive definite matrix, | ||
and :math:`\mathbf{z}_t` is a :math:`N \times 1` vector of standard normal innovations. | ||
|
||
Conditional covariance matrix | ||
----------------------------- | ||
|
||
In the CCC-GARCH(1,1) model, the conditional covariance matrix :math:`\mathbf{H}_t` is constructed as: | ||
|
||
.. math:: | ||
:label: mv_volatility_eq | ||
\mathbf{H}_t = \mathbf{D}_t\mathbf{R}\mathbf{D}_t | ||
where :math:`\mathbf{D}_t=\text{diag}(\mathbf{h}_t)^{1/2}`, | ||
and :math:`\mathbf{h}_t` is a :math:`N \times 1` vector whose elements are univariate GARCH(1,1) variances for each time series. | ||
:math:`\mathbf{R}` is a positive definite constant conditional correlation matrix. | ||
|
||
.. admonition:: A bivarite example | ||
:class: note | ||
|
||
In a bivariate GARCH(1,1) setting, we have two univariate GARCH(1,1) processes, one for each return series. | ||
Specifically, the GARCH(1,1) equations for the conditional variances :math:`h_{1t}` and :math:`h_{2t}` can be written as: | ||
|
||
.. math:: | ||
:label: garch1_modified | ||
h_{1t} = \omega_1 + \alpha_1 \epsilon_{1,t-1}^2 + \beta_1 h_{1,t-1} | ||
.. math:: | ||
:label: garch2_modified | ||
h_{2t} = \omega_2 + \alpha_2 \epsilon_{2,t-1}^2 + \beta_2 h_{2,t-1} | ||
where, | ||
|
||
- :math:`\epsilon_{1,t-1}` and :math:`\epsilon_{2,t-1}` are past shock terms from their respective time series. | ||
- The parameters :math:`\omega_1, \alpha_1, \beta_1, \omega_2, \alpha_2, \beta_2` are to be estimated. | ||
|
||
With these individual variances, the conditional covariance matrix :math:`\mathbf{H}_t` is: | ||
|
||
.. math:: | ||
:label: conditional_cov_matrix_modified | ||
\mathbf{H}_t = \begin{pmatrix} | ||
h_{1t} & \rho\sqrt{h_{1t} h_{2t}} \\\\ | ||
\rho\sqrt{h_{1t} h_{2t}} & h_{2t} | ||
\end{pmatrix} | ||
Here, :math:`\rho` is the correlation between the two time series. | ||
It is assumed to be constant over time in the CCC-GARCH framework. | ||
|
||
The constant correlation matrix :math:`\mathbf{R}` simplifies to a :math:`2 \times 2` matrix: | ||
|
||
.. math:: | ||
:label: bivariate_constant_corr_matrix | ||
\mathbf{R} = | ||
\begin{pmatrix} | ||
1 & \rho \\\\ | ||
\rho & 1 | ||
\end{pmatrix} | ||
Log-likelihood function | ||
----------------------- | ||
|
||
The log-likelihood function for the :math:`N`-dimensional multivariate GARCH CCC model is: | ||
|
||
.. math:: | ||
:label: mv_log_likelihood | ||
\begin{align} | ||
\ell &= -\frac{1}{2} \sum_{t=1}^T \left[ N\ln(2\pi) + \ln(|\mathbf{H}_t|) + \mathbf{\epsilon}_t' \mathbf{H}_t^{-1} \mathbf{\epsilon}_t \right] \\\\ | ||
&= -\frac{1}{2} \sum_{t=1}^T \left[ N\ln(2\pi) + \ln(|\mathbf{D}_t\mathbf{R}\mathbf{D}_t|) + \mathbf{\epsilon}_t' \mathbf{D}_t^{-1}\mathbf{R}^{-1}\mathbf{D}_t^{-1} \mathbf{\epsilon}_t \right] \\\\ | ||
&= -\frac{1}{2} \sum_{t=1}^T \left[ N\ln(2\pi) + 2 \ln(|\mathbf{D}_t|) + \ln(|\mathbf{R}|)+ \mathbf{z}_t' \mathbf{R}^{-1} \mathbf{z}_t \right] | ||
\end{align} | ||
where :math:`\mathbf{z}_t=\mathbf{D}_t^{-1}\mathbf{\epsilon}_t` is the vector of standardized residuals. | ||
|
||
This function is maximized to estimate the model parameters. | ||
|
||
.. admonition:: A bivariate example | ||
:class: note | ||
|
||
In the bivariate case, the log-likelihood function can be specifically written as a function of all parameters. | ||
|
||
The log-likelihood function :math:`\ell` for the bivariate case with all parameters :math:`\Theta = (\mu_1, \omega_1, \alpha_1, \beta_1, \mu_2, \omega_2, \alpha_2, \beta_2, \rho)` is: | ||
|
||
.. math:: | ||
:label: log_likelihood_bivariate | ||
\ell(\Theta) = -\frac{1}{2} \sum_{t=1}^T \left[ 2\ln(2\pi) + 2 \ln(|\mathbf{D}_t|) + \ln(|\mathbf{R}|)+ \mathbf{z}_t' \mathbf{R}^{-1} \mathbf{z}_t \right] | ||
Here, :math:`\mathbf{z}_t'` is the transpose of the vector of standardized residuals :math:`\mathbf{z}_t`, | ||
|
||
.. math:: | ||
\mathbf{z}_t = \begin{pmatrix} | ||
z_{1,t} \\ | ||
z_{2,t} | ||
\end{pmatrix} | ||
Further, | ||
|
||
.. math:: | ||
\mathbf{D}_t = \begin{pmatrix} | ||
\sqrt{h_{1t}} & 0 \\\\ | ||
0 & \sqrt{h_{2t}} | ||
\end{pmatrix} | ||
so the log-determinant of :math:`\mathbf{D}_t` is | ||
|
||
.. math:: | ||
\ln(|\mathbf{D}_t|) = \frac{1}{2} \ln(h_{1t} h_{2t}) | ||
The log-determinant of :math:`\mathbf{R}` is | ||
|
||
.. math:: | ||
\ln(|\mathbf{R}|) = \ln(1 - \rho^2) | ||
Inverse of :math:`\mathbf{R}` is | ||
|
||
.. math:: | ||
\mathbf{R}^{-1} = \frac{1}{1 - \rho^2} \begin{pmatrix} | ||
1 & -\rho \\ | ||
-\rho & 1 | ||
\end{pmatrix} | ||
Lastly, :math:`\mathbf{z}_t' \mathbf{R}^{-1} \mathbf{z}_t` is | ||
|
||
.. math:: | ||
\mathbf{z}_t' \mathbf{R}^{-1} \mathbf{z}_t = \frac{1}{1 - \rho^2} \left[ z_{1t}^2 - 2\rho z_{1t} z_{2t} + z_{2t}^2 \right] | ||
Inserting all of these into :math:`\ell(\Theta)` in equation :math:numref:`log_likelihood_bivariate`: | ||
|
||
.. math:: | ||
:label: log_likelihood | ||
\ell(\Theta) = -\frac{1}{2} \sum_{t=1}^T \left[ 2\ln(2\pi) + \ln(h_{1t} h_{2t} (1 - \rho^2)) + \frac{1}{1 - \rho^2} \left( z_{1t}^2 - 2\rho z_{1t} z_{2t} + z_{2t}^2 \right) \right] | ||
Estimation techniques | ||
===================== | ||
|
||
My implementation of :class:`frds.algorithms.GARCHModel_CCC` fits the GARCH-CCC model | ||
by simultaneously estimating all parameters via maxmimizing the log-likelihood :math:numref:`log_likelihood`. | ||
|
||
General steps are: | ||
|
||
1. Use :class:`frds.algorithms.GARCHModel` to estimate the :doc:`/algorithms/garch` model for each of the returns. | ||
|
||
2. Use the standardized residuals from the estimated GARCH models to compute correlation coefficient. | ||
|
||
3. Use as starting vaues the estimated parameters from above in optimizing the loglikelihood function. | ||
|
||
|
||
References | ||
========== | ||
|
||
- `Engle, R. F. (1982) <https://doi.org/10.2307/1912773>`_, "Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation." *Econometrica*, 50(4), 987-1007. | ||
|
||
- `Bollerslev, T. (1990) <https://doi.org/10.2307/2109358>`_, "Modelling the Coherence in Short-Run Nominal Exchange Rates: A Multivariate Generalized ARCH Model." *Review of Economics and Statistics*, 72(3), 498-505. | ||
|
||
API | ||
=== | ||
|
||
.. autoclass:: frds.algorithms.GARCHModel_CCC | ||
:exclude-members: Parameters | ||
|
||
.. autoclass:: frds.algorithms.GARCHModel_CCC.Parameters | ||
:exclude-members: __init__ | ||
:no-undoc-members: | ||
|
||
Examples | ||
======== | ||
|
||
Let's import the dataset. | ||
|
||
>>> import pandas as pd | ||
>>> data_url = "https://www.stata-press.com/data/r18/stocks.dta" | ||
>>> df = pd.read_stata(data_url, convert_dates=["date"]) | ||
|
||
Scale returns to percentage returns for better optimization results | ||
|
||
>>> returns1 = df["toyota"].to_numpy() * 100 | ||
>>> returns2 = df["nissan"].to_numpy() * 100 | ||
|
||
Use :class:`frds.algorithms.GARCHModel_CCC` to estimate a GARCH(1,1)-CCC. | ||
|
||
>>> from frds.algorithms import GARCHModel_CCC | ||
>>> model_ccc = GARCHModel_CCC(returns1, returns2) | ||
>>> res = model_ccc.fit() | ||
>>> from pprint import pprint | ||
>>> pprint(res) | ||
Parameters(mu1=0.02745814255283541, | ||
omega1=0.03401400758840226, | ||
alpha1=0.06593379740524756, | ||
beta1=0.9219575443861723, | ||
mu2=0.009390068254041505, | ||
omega2=0.058694325049554734, | ||
alpha2=0.0830561828957614, | ||
beta2=0.9040961791372522, | ||
rho=0.6506770477876749, | ||
loglikelihood=-7281.321453218112) | ||
|
||
These results are comparable to the ones obtained in Stata, and even marginally | ||
better based on log-likelihood. In Stata, we can estimate the same model as below: | ||
|
||
.. code-block:: stata | ||
webuse stocks, clear | ||
replace toyota = toyota * 100 | ||
replace nissan = nissan * 100 | ||
mgarch ccc (toyota nissan = ), arch(1) garch(1) | ||
The Stata results are: | ||
|
||
.. code-block:: stata | ||
Constant conditional correlation MGARCH model | ||
Sample: 1 thru 2015 Number of obs = 2,015 | ||
Distribution: Gaussian Wald chi2(.) = . | ||
Log likelihood = -7282.961 Prob > chi2 = . | ||
------------------------------------------------------------------------------------- | ||
| Coefficient Std. err. z P>|z| [95% conf. interval] | ||
--------------------+---------------------------------------------------------------- | ||
toyota | | ||
_cons | .0277462 .0302805 0.92 0.360 -.0316024 .0870948 | ||
--------------------+---------------------------------------------------------------- | ||
ARCH_toyota | | ||
arch | | ||
L1. | .0666384 .0101597 6.56 0.000 .0467257 .0865511 | ||
| | ||
garch | | ||
L1. | .9210688 .0119214 77.26 0.000 .8977032 .9444343 | ||
| | ||
_cons | .0344153 .0109208 3.15 0.002 .013011 .0558197 | ||
--------------------+---------------------------------------------------------------- | ||
nissan | | ||
_cons | .0079682 .0349351 0.23 0.820 -.0605034 .0764398 | ||
--------------------+---------------------------------------------------------------- | ||
ARCH_nissan | | ||
arch | | ||
L1. | .0851778 .0132656 6.42 0.000 .0591778 .1111779 | ||
| | ||
garch | | ||
L1. | .9016613 .0150494 59.91 0.000 .8721649 .9311577 | ||
| | ||
_cons | .0603765 .0178318 3.39 0.001 .0254269 .0953262 | ||
--------------------+---------------------------------------------------------------- | ||
corr(toyota,nissan) | .6512249 .0128548 50.66 0.000 .62603 .6764199 | ||
------------------------------------------------------------------------------------- | ||
See `Stata's reference manual <https://www.stata.com/manuals/ts.pdf>`_ for its | ||
estimation techniques. |