Skip to content

Identification and analysis of precursors of time-series using the Intelligent Methodology for the Discovery of Precursor of adverse Events (IM-DoPE)

License

Notifications You must be signed in to change notification settings

mhbl3/PrecursorAnalysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

41 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Work in Progress

This package is currently work in progress. The project is projected to be completed by May 2021. A version of this work was published at the AIAA SciTech 2021 Forum

Precursor Analysis Overview

Identification and analysis of precursors of time-series using the Intelligent Methodology for the Discovery of Precursor of adverse Events (IM-DoPE). IM-DoPE

Data processing

cd ../PrecursorAnalysis
python -m imdope.buildDataModel --nominal-directory"Data/toy_data/nominal_events" --adverse-directory "Data/toy_data/adverse_events" --verbose 1 --correlation-thres 0.9 --target-feature "Label"

Expected output of data processing using IM-DoPE:

Flight Length set to 100
Keeping only the following columns: Index(['Param1', 'Param2', 'Param3', 'Param4', 'Param5', 'Param6', 'Param7',
       'Param8', 'Param9', 'Param10', 'filename', 'flight_id', 'Anomaly'],
      dtype='object')
Now Concatenating all flights into a dataframe
Data Model Saved! (path: ../PrecursorAnalysis\Data\MyDataContainer.pkl)
List of features used:
Index(['Param1', 'Param2', 'Param3', 'Param4', 'Param5', 'Param6', 'Param7',
       'Param8', 'Param9', 'Param10', 'filename', 'flight_id', 'Anomaly'],
      dtype='object')
Data Model Saved! (path: ../PrecursorAnalysis\Data\MyDataContainer.pkl)
Data Model Saved! (path: ../PrecursorAnalysis\Data\MyDataContainer_MIL.pkl)
training size: (280, 100, 12)
validation size: (24, 100, 12)
test size: (96, 100, 12)
Data Model Saved! (path: ../PrecursorAnalysis\Data\MyDataContainer_MIL.pkl)

Training a model

The model can be trained directly from the root of the repo using:

cd ../PrecursorAnalysis
python -m imdope.train --model-type "imdope_binary" --lr 0.001 --l2 0.01 --ks 8 5 3 --out-channels 10 15 20 --use-str
atisfy True --model-name "test_model.pt" --epochs 100 --data-container "./Data/MyDataContainer_MIL.pkl" --use-cuda True --mini-batch-percent 0.10

Using pre-trained model

A model that was previously trained can be used for inference using:

cd ../PrecursorAnalysis
python -m imdope.train --load-model True --model-name "test_model.pt" --data-container "./Data/MyDataContainer_MIL.pkl" --use-cuda True

The model is evaluated on the test set, whether it was just trained or a pre-trained model was used, and the results will be printed as follow:

Precision Recall f1-score support
0 1 1 1 48
1 1 1 1 48
accuracy 1 96
macro avg 1 1 1 96
weighted avg 1 1 1 96

Precursor Discovery

The precursor of a time series with id 5 of interest can be identified:

python -m imdope.precursorIdentification --filename "./Data/MyDataContainer_MIL.pkl" --flight-id 19 --use-cuda True

The precursor will be extracted directly from the model architecture as described in the paper List of outputs:

About

Identification and analysis of precursors of time-series using the Intelligent Methodology for the Discovery of Precursor of adverse Events (IM-DoPE)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published