Seminarium magisterskie MIMUW 2019/2020
- 2019-10-03
- 2019-10-10; Umair Rasheed - Volkswagen
- 2019-10-17; Michał Futrega (Neural Architecture Search) + Jacek Cyranka (prezentacja tematów prac magisterskich)
- 2019-10-24; Maciej Biernaczyk - AutoGAN: Neural Architecture Search for Generative Adversarial Networks
- 2019-10-31; Michał Zawalski - Knowledge-free solving the Rubik’s cube
- 2019-11-07; Krystian Koziatek - Learning the Depths of Moving People by Watching Frozen People + Marek Cygan: prezentacja tematów prac magisterskich
- 2019-11-14; Mateusz Doliński - NGBoost: Natural Gradient Boosting for Probabilistic Prediction
- 2019-11-21; Jakub Skorupski - TossingBot: Learning to Throw Arbitrary Objects with Residual Physics | Prezentacja
- 2019-11-28; Michał Kukuła - Graph-based sparse neural networks for traffic signal optimization + (Paweł Gora: prezentacja tematów prac magisterskich
- 2019-12-05 Przemek Biecek: prezentacja tematów prac magisterskich & Piotr Miłoś: prezentacja tematów prac magisterskich
- 2019-12-12; Mateusz Doliński - Wild patterns: Ten years after the rise of adversarial machine learning
- 2019-12-19 Henryk Michalewski, Mateusz Malinowski - Prezentacja tematów prac magisterskich
- 2020-01-09 brak seminarium
- 2020-01-16 Jakub Jasiulewicz - Playing hard exploration games by watching YouTube (paper)
- 2020-01-23 Kamil Faber - Optymalizacja Hiperparametrów, Tomasz Kurzelewski
- 2020-02-27 Zuzanna Kwiatkowska - Introduction to Topological Data Analysis
- 2020-03-05
- 2020-03-12 Jakub Sieroń - Emergent Tool Use from Multi-Agent Interaction
- 2020-03-19
- 2020-03-26 Maciej Sypetkowski -- Presentation, Self-training with Noisy Student improves ImageNet classification
- 2020-04-02 Jakub Sieroń
- 2020-04-16 brak seminarium
- 2020-04-23 brak seminarium
- 2020-04-30 (10:15-13:15) Michał Kukuła, Jakub Skorupski, Kamil Tokarski - Autoencoders
- 2020-05-07
- 2020-05-14
- 2020-05-21 (10:15-13:15) Zuzanna Kwiatkowska (AudioAI), Mieczysław Krawiarz, Krystian Koziatek, Michał Futrega - DL for audio, NLP and video
- 2020-05-28 Piotr Piękos - Mathematical tasks with nlp methods
- 2020-06-04
- 2018-10-11; Zuzanna Pilat - Learning algorithms with neural gpu
- 2018-10-18; Bartosz Biskupski (TCL) - prezentacja tematów prac magisterskich
- 2018-10-25; (seminarium odwołane) Paweł Gora - prezentacja tematów prac magisterskich
- 2018-11-08; Paweł Gora - prezentacja tematów prac magisterskich
- 2018-11-15; Sebastian Jaszczur - Distillation and privileged information
- 2018-11-22; Przemysław Sadownik - Tree-based Pipeline Optimization Tool for Automating Data Science
- 2018-11-29; Marcin Papierzyński - Opening the black box of Deep Neural Networks via Information
- 2018-12-13; Piotr Biliński - prezentacja tematów prac magisterskich.
- 2018-12-20; Michał Zawalski
- 2018-01-10; Rafał Sadziak - Adversarial attacks and defences
- 2018-01-17; Michał Łuszczyk - Realistic Evaluation of Deep Semi-Supervised Learning Algorithms.
- 2018-01-24; Wojciech Mańke - Neural Architecture Search With Reinforcement Learning
- 2019-01-31;
- 2019-02-07;
- 2019-02-28; Paweł Zięcik - Large-Scale Study of Curiosity-Driven Learning
- 2019-03-07; Michał Kukuła Learning Optimal and Fair Decision Trees for Non-Discriminative Decision-Making
- 2019-03-14; Jakub Sieroń Thinking Fast and Slow with Deep Learning and Tree Search
- 2019-03-21; Maciej Biernaczyk
- 2019-03-28; Adam Dobrakowski
- 2019-04-04; Sebastian Jaszczur - Concrete Problems in AI Safety
- 2019-04-11; Jakub Skorupski - Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN
- 2019-04-18;
- 2019-04-25; Mikołaj Błaż - Single-Agent Policy Tree Search With Guarantees
- 2019-05-02;
- 2019-05-09; Przemysław Sadownik "Layer-based AutoML with evolutionary algorithms"
- 2019-05-16; Jacek Maksymiuk - “What is Relevant in a Text Document?”: An Interpretable Machine Learning Approach
- 2019-05-23; Mateusz Doliński - doc2vec
- 2019-05-30; Piotr Piękos - Hindsight Experience Replay
- 2019-06-06; Paweł Zięcik - BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
- 2019-06-13; Krystian Koziatek - Depth map prediction problem overview, Tomasz Kępa - AutoAugment: Learning Augmentation Strategies from Data
- 2017-10-05; Spotkanie organizacyjne
- 2017-10-12; Propozycje prac magisterskich - NVidia
- 2017-10-19; Propozycje prac magisterskich - Henryk Michalewski
- 2017-10-26; Understanding deep learning requires rethinking generalization, https://arxiv.org/abs/1611.03530 , prezentacja
- 2017-11-02; Distilling the Knowledge in a Neural Network, https://arxiv.org/abs/1503.02531
- 2017-11-09; "Why Should I Trust You?": Explaining the Predictions of Any Classifier, https://arxiv.org/abs/1602.04938 prezentacja
- 2017-11-16; Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images, https://arxiv.org/abs/1412.1897
- 2017-11-23; Visualizing statistical models: Removing the blindfold, http://had.co.nz/stat645/model-vis.pdf
- 2017-11-30; mlr: Machine Learning in R, http://jmlr.org/papers/v17/15-066.html
- 2017-12-07
- 2017-12-14; Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics, https://arxiv.org/pdf/1705.07115.pdf
- 2017-12-21; Deep Reinforcement Learning: Pong from Pixels, http://karpathy.github.io/2016/05/31/rl/ https://docs.google.com/presentation/d/1lHvatcCaJXit7Uub4pBDOD_s32VZKq5NRZPpxcaDf8M/edit#slide=id.p3
- 2018-01-11; Scikit-learn & Pandas
- 2018-01-18; Visualizing and Understanding Convolutional Networks, https://arxiv.org/abs/1311.2901
- 2018-01-25; A Critical Review of Recurrent Neural Networks for Sequence Learning https://arxiv.org/abs/1506.00019
- 2018-03-01; A Unified Approach to Interpreting Model Predictions https://arxiv.org/abs/1705.07874
- 2018-03-08
- 2018-03-15; Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm https://arxiv.org/abs/1712.01815, Mastering the game of Go without human knowledge https://www.nature.com/articles/nature24270?sf123103138=1
- 2018-03-22; Playing Atari with Deep Reinforcement Learning https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf oraz Continuous control with deep reinforcement learning https://arxiv.org/abs/1509.02971
- 2018-03-28; Paweł Góra, zaczynamy 10:45
- 2018-04-05; brak seminarium
- 2018-04-12; Dynamic Routing Between Capsules https://arxiv.org/abs/1710.09829
- 2018-04-19
- 2018-04-26; Matrix Capsules with EM Routing https://openreview.net/forum?id=HJWLfGWRb
- 2018-05-10; GA2M - Interpretable Generalized Additive Models (+ applications) - Przemysław Horban
- 2018-05-17; NeuroSAT - Learning a SAT Solver from Single-Bit Supervision https://arxiv.org/abs/1802.03685
- 2018-05-24; Anchors: High-Precision Model-Agnostic Explanations https://homes.cs.washington.edu/~marcotcr/aaai18.pdf
- 2018-06-07; Continuous control with deep reinforcement learning https://arxiv.org/abs/1509.02971