Skip to content

Commit

Permalink
Support sampling and polling intervals (#11)
Browse files Browse the repository at this point in the history
* Support sampling and polling intervals

Appears to be a way to significantly reduce
performance impact of a frequent polling interval when
combined with an infrequent sampling interval while
maintaining an accurate GIL contention metric.

* Fixup: Add flaky wrapper to retry bad results from differing OS
  • Loading branch information
milesgranger authored Mar 15, 2023
1 parent 25a9104 commit 06f9da4
Show file tree
Hide file tree
Showing 8 changed files with 292 additions and 156 deletions.
2 changes: 1 addition & 1 deletion Cargo.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion Cargo.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
[package]
name = "gil-knocker"
version = "0.2.2"
version = "0.3.0"
edition = "2021"
authors = ["Miles Granger <miles59923@gmail.com>"]
license = "MIT"
Expand Down
53 changes: 33 additions & 20 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ to align with what is reported by `py-spy` when running the same [test case](./t
This works by spawning a thread which, at regular intervals, re-acquires the GIL and checks
how long it took for the GIL to answer.

Note, the interval (`interval_micros`) is configurable. The lower the value, the
Note, the `polling_interval_micros` and `sampling_interval_micros` are configurable. The lower the value, the
more accurate the metric, but will be more likely to slow your
program down.. because it will play a larger role in competing for the GIL's attention.

Expand All @@ -44,7 +44,7 @@ Look at the [tests](./tests)

from gilknocker import KnockKnock

knocker = KnockKnock(interval_micros=1000, timeout_secs=1)
knocker = KnockKnock(polling_interval_micros=1_000, sampling_interval_micros=10_000, timeout_secs=1)
knocker.start()

... smart code here ...
Expand All @@ -55,42 +55,55 @@ knocker.reset_contention_metric() # reset timers and meteric calculation
... some more smart code ...

knocker.stop()
knocker.stop() # Idempodent stopping behavior

knocker.contention_metric # will stay the same after `stop()` is called.

knocker.is_running # If you're ever in doubt

```

### How will this impact my program?

Short answer, it depends, but probably not much. As stated above, the more frequent the
monitoring interval, the more likely non-GIL bound programs will be affected, since there is
polling and sampling interval, the more likely non-GIL bound programs will be affected, since there is
more room for contention. In GIL heavy programs, the monitoring thread will spend most of its
time simply waiting for a lock. This is demonstrated in the [benchmarks](./benchmarks) testing.

In general, it appears that `polling_interval_micros=1_000` is a good tradeoff in terms of accurate
GIL contention metric and the resulting `sampling_interval_micros=10_000` (defaults to 10x polling interval)
is high enough to relax performance impact a bit.

Below is a summary of benchmarking two different
functions, one which uses the GIL, and one which releases it. For `interval=None` this means
no polling was used, effectively just running the function without `gilknocker`. Otherwise,
the interval represents the value passed to `KnockKnock(interval_micros=interval)`
the interval represents the value passed to `KnockKnock(polling_interval_micros=interval)`

`python -m pytest -v --benchmark-only benchmarks/ --benchmark-histogram`

```
---------------------------------------------------------------------------------------------- benchmark: 12 tests ----------------------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_bench[a_lotta_gil-None] 697.6828 (1.0) 804.5402 (1.11) 755.6981 (1.06) 53.0970 (61.53) 777.1266 (1.09) 101.6509 (83.91) 2;0 1.3233 (0.95) 5 1
test_bench[a_lotta_gil-10] 707.0513 (1.01) 724.3552 (1.0) 714.4783 (1.0) 6.8460 (7.93) 715.2083 (1.0) 10.0545 (8.30) 2;0 1.3996 (1.0) 5 1
test_bench[a_lotta_gil-1000] 708.0325 (1.01) 742.4564 (1.02) 722.2247 (1.01) 12.6517 (14.66) 721.7707 (1.01) 12.5343 (10.35) 2;0 1.3846 (0.99) 5 1
test_bench[a_lotta_gil-10000] 716.1168 (1.03) 791.8905 (1.09) 733.0825 (1.03) 32.9744 (38.21) 717.7345 (1.00) 23.2516 (19.19) 1;1 1.3641 (0.97) 5 1
test_bench[a_lotta_gil-100000] 758.2248 (1.09) 760.4424 (1.05) 759.2441 (1.06) 0.8629 (1.0) 758.9144 (1.06) 1.2114 (1.0) 2;0 1.3171 (0.94) 5 1
test_bench[a_lotta_gil-100] 760.8787 (1.09) 839.1526 (1.16) 777.9811 (1.09) 34.2144 (39.65) 763.4823 (1.07) 20.4199 (16.86) 1;1 1.2854 (0.92) 5 1
test_bench[a_little_gil-None] 1,505.1989 (2.16) 1,510.2234 (2.08) 1,508.0564 (2.11) 1.8985 (2.20) 1,508.2229 (2.11) 2.5074 (2.07) 2;0 0.6631 (0.47) 5 1
test_bench[a_little_gil-100000] 1,506.0053 (2.16) 1,559.4051 (2.15) 1,531.3341 (2.14) 22.6875 (26.29) 1,524.5321 (2.13) 38.7802 (32.01) 2;0 0.6530 (0.47) 5 1
test_bench[a_little_gil-10000] 1,508.9686 (2.16) 1,521.0912 (2.10) 1,515.0701 (2.12) 5.5128 (6.39) 1,514.7033 (2.12) 10.3673 (8.56) 2;0 0.6600 (0.47) 5 1
test_bench[a_little_gil-1000] 1,534.0449 (2.20) 1,540.6296 (2.13) 1,537.8621 (2.15) 2.5307 (2.93) 1,538.5808 (2.15) 3.4261 (2.83) 2;0 0.6503 (0.46) 5 1
test_bench[a_little_gil-100] 1,566.4128 (2.25) 1,576.2634 (2.18) 1,569.6245 (2.20) 4.0978 (4.75) 1,567.4297 (2.19) 5.3087 (4.38) 1;0 0.6371 (0.46) 5 1
test_bench[a_little_gil-10] 1,587.1471 (2.27) 1,597.2920 (2.21) 1,592.0651 (2.23) 3.7001 (4.29) 1,591.2409 (2.22) 4.1942 (3.46) 2;0 0.6281 (0.45) 5 1
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------ benchmark: 18 tests -------------------------------------------------------------------------------------
Name (time in s) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_bench[a_little_gil-100000] 1.5368 (2.07) 1.6596 (2.23) 1.5968 (2.14) 0.0476 (130.12) 1.5943 (2.14) 0.0719 (140.14) 2;0 0.6262 (0.47) 5 1
test_bench[a_little_gil-10000] 1.5321 (2.06) 1.5989 (2.14) 1.5618 (2.09) 0.0289 (78.95) 1.5610 (2.09) 0.0510 (99.52) 2;0 0.6403 (0.48) 5 1
test_bench[a_little_gil-1000] 1.5246 (2.05) 1.5298 (2.05) 1.5271 (2.05) 0.0019 (5.12) 1.5269 (2.05) 0.0021 (4.00) 2;0 0.6549 (0.49) 5 1
test_bench[a_little_gil-100] 1.5505 (2.09) 1.5543 (2.08) 1.5528 (2.08) 0.0014 (3.96) 1.5533 (2.08) 0.0018 (3.60) 2;0 0.6440 (0.48) 5 1
test_bench[a_little_gil-10] 1.5863 (2.13) 1.6074 (2.16) 1.5928 (2.14) 0.0088 (23.94) 1.5896 (2.13) 0.0111 (21.60) 1;0 0.6278 (0.47) 5 1
test_bench[a_little_gil-None] 1.5043 (2.02) 1.5067 (2.02) 1.5051 (2.02) 0.0011 (2.95) 1.5044 (2.02) 0.0016 (3.17) 1;0 0.6644 (0.50) 5 1
test_bench[a_lotta_gil-100000] 0.7450 (1.00) 0.7458 (1.0) 0.7455 (1.0) 0.0004 (1.0) 0.7457 (1.0) 0.0005 (1.0) 1;0 1.3413 (1.0) 5 1
test_bench[a_lotta_gil-10000] 0.7471 (1.00) 0.8104 (1.09) 0.7601 (1.02) 0.0281 (76.94) 0.7472 (1.00) 0.0168 (32.82) 1;1 1.3156 (0.98) 5 1
test_bench[a_lotta_gil-1000] 0.7436 (1.0) 0.7472 (1.00) 0.7463 (1.00) 0.0015 (4.11) 0.7470 (1.00) 0.0013 (2.54) 1;1 1.3400 (1.00) 5 1
test_bench[a_lotta_gil-100] 0.7558 (1.02) 0.7680 (1.03) 0.7640 (1.02) 0.0050 (13.56) 0.7644 (1.03) 0.0061 (11.97) 1;0 1.3089 (0.98) 5 1
test_bench[a_lotta_gil-10] 0.7542 (1.01) 0.7734 (1.04) 0.7649 (1.03) 0.0084 (23.05) 0.7669 (1.03) 0.0151 (29.45) 2;0 1.3074 (0.97) 5 1
test_bench[a_lotta_gil-None] 0.7437 (1.00) 0.8490 (1.14) 0.8006 (1.07) 0.0501 (137.15) 0.8074 (1.08) 0.0969 (189.03) 1;0 1.2490 (0.93) 5 1
test_bench[some_gil-100000] 1.4114 (1.90) 1.4131 (1.89) 1.4122 (1.89) 0.0007 (1.81) 1.4121 (1.89) 0.0010 (2.00) 2;0 0.7081 (0.53) 5 1
test_bench[some_gil-10000] 1.4115 (1.90) 1.4258 (1.91) 1.4167 (1.90) 0.0059 (16.03) 1.4141 (1.90) 0.0083 (16.19) 1;0 0.7058 (0.53) 5 1
test_bench[some_gil-1000] 1.4169 (1.91) 1.5793 (2.12) 1.4618 (1.96) 0.0690 (188.82) 1.4232 (1.91) 0.0769 (150.04) 1;0 0.6841 (0.51) 5 1
test_bench[some_gil-100] 1.4468 (1.95) 1.6261 (2.18) 1.5701 (2.11) 0.0752 (205.83) 1.5998 (2.15) 0.1004 (195.70) 1;0 0.6369 (0.47) 5 1
test_bench[some_gil-10] 1.5269 (2.05) 1.9894 (2.67) 1.7037 (2.29) 0.1895 (518.49) 1.7301 (2.32) 0.2692 (524.96) 1;0 0.5870 (0.44) 5 1
test_bench[some_gil-None] 1.4115 (1.90) 1.4267 (1.91) 1.4155 (1.90) 0.0063 (17.33) 1.4136 (1.90) 0.0053 (10.24) 1;1 0.7065 (0.53) 5 1
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
```

![](./benchmarks/histogram.svg)
Expand Down
Loading

0 comments on commit 06f9da4

Please sign in to comment.