Skip to content

Commit

Permalink
Revert "Revert "More efficient datastructures for asm dag""
Browse files Browse the repository at this point in the history
This reverts commit de47c09.
  • Loading branch information
JasonGross committed Nov 7, 2022
1 parent b6dae11 commit fd23370
Showing 1 changed file with 0 additions and 290 deletions.
290 changes: 0 additions & 290 deletions src/Assembly/Symbolic.v
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,6 @@ Require Import Crypto.Util.Tactics.SetEvars.
Require Import Crypto.Util.Prod.
Require Import Crypto.Util.Tactics.SplitInContext.
Require Import Crypto.Util.Tactics.SpecializeBy.
Require Import Crypto.Util.Tactics.SpecializeAllWays.
Require Import Crypto.Util.Tactics.SpecializeUnderBindersBy.
Require Import Crypto.Util.Tactics.Head.
Require Import Crypto.Util.ZUtil.Lxor.
Expand Down Expand Up @@ -525,294 +524,7 @@ Proof. repeat intro; subst; assumption. Qed.
Existing Class node_ok.
#[global]
Hint Extern 1 (node_ok ?i ?n) => exact (@new_node_ok n I i) : typeclass_instances.
Module Old.
Module dag.
Definition t : Type := list (node idx * description).
Definition empty : t := nil.
Definition size (d : t) : N := N.of_nat (List.length d).
Definition lookup (d : t) (i : idx) : option (node idx)
:= option_map fst (List.nth_error d (N.to_nat i)).
Definition reverse_lookup (d : t) (i : node idx) : option idx
:= option_map N.of_nat (List.indexof (fun '(n', _) => node_beq N.eqb i n') d).
Definition size_ok (d : t) : Prop
:= True.
Definition all_nodes_ok (d : t) : Prop
:= forall i r, lookup d i = Some r -> node_ok i r.
Definition ok (d : t) : Prop
:= size_ok d
/\ (forall i n, reverse_lookup d n = Some i <-> lookup d i = Some n)
/\ (forall i n, lookup d i = Some n -> (i < size d)%N).
Definition merge_node {descr : description} (n : node idx) (d : t) : idx * t
:= match reverse_lookup d n with
| Some i => (i, d)
| None
=> (size d, d ++ [(n, descr)])
end.
Definition gensym (s:OperationSize) (d : t) : node idx
:= (old s (size d), []).
Existing Class ok.
Existing Class all_nodes_ok.

Definition get_eager_description_description (d : eager_description) : option string
:= option_map fst d.
Definition get_eager_description_always_show (d : eager_description) : bool
:= match d with Some (_, always_show) => always_show | None => false end.
Definition force_description : description -> eager_description
:= option_map (fun '(descr, always_show) => (descr tt, always_show)).

Module eager.
Definition t := list (idx * node idx * eager_description).
Definition force (d : dag.t) : eager.t
:= List.map (fun '(idx, (n, descr)) => (N.of_nat idx, n, force_description descr))
(List.enumerate d).
Definition description_lookup (d : eager.t) (descr : string) : list idx
:= List.map (fun '(idx, _, _) => idx) (List.filter (fun '(_, _, descr') => match get_eager_description_description descr' with Some descr' => String.eqb descr descr' | _ => false end) d).
End eager.

Definition M T := t -> T * t.
Definition bind {A B} (v : M A) (f : A -> M B) : M B
:= fun d => let '(v, d) := v d in f v d.
Definition ret {A} (v : A) : M A
:= fun d => (v, d).

Lemma iff_reverse_lookup_lookup d {ok : ok d}
: forall i n, reverse_lookup d n = Some i <-> lookup d i = Some n.
Proof. apply ok. Qed.

Lemma lookup_value_size d {ok : ok d}
: forall i n, lookup d i = Some n -> (i < size d)%N.
Proof. apply ok. Qed.

Lemma lookup_size_error d {ok : ok d}
: forall i, (size d <= i)%N -> lookup d i = None.
Proof.
intro i; generalize (lookup_value_size d i); destruct lookup; intuition.
specialize_under_binders_by reflexivity.
lia.
Qed.

Lemma lookup_merge_node {descr : description} (n : node idx) (d : t) i
{ok : ok d}
: dag.lookup (snd (dag.merge_node n d)) i = match dag.lookup d i with
| Some v => Some v
| None
=> if (i =? size d)%N && Option.is_None (reverse_lookup d n)
then Some n
else None
end.
Proof.
cbv [dag.merge_node andb is_None lookup dag.ok size] in *;
repeat first [ assumption
| reflexivity
| lia
| progress specialize_under_binders_by eassumption
| progress subst
| progress destruct_head'_and
| progress reflect_hyps
| progress cbn [fst snd option_map List.nth_error] in *
| progress cbv [option_map] in *
| rewrite Nat2N.id in *
| rewrite nth_error_app in *
| rewrite Nat.sub_diag in *
| rewrite nth_error_length_error in * by lia
| rewrite @nth_error_nil_error in *
| congruence
| break_innermost_match_step
| match goal with
| [ H : nth_error (_ :: _) ?x = _ |- _ ] => destruct x eqn:?; cbn [nth_error] in H
end ].
Qed.

Lemma reverse_lookup_merge_node {d : t}
{ok : ok d} {descr : description} (n n' : node idx)
: dag.reverse_lookup (snd (dag.merge_node n d)) n'
= if node_beq N.eqb n' n
then Some (fst (dag.merge_node n d))
else dag.reverse_lookup d n'.
Proof.
cbv [dag.merge_node andb is_None reverse_lookup dag.ok size] in *;
repeat first [ assumption
| reflexivity
| lia
| congruence
| progress inversion_option
| progress specialize_under_binders_by eassumption
| progress subst
| progress destruct_head'_and
| progress reflect_hyps
| rewrite @indexof_app in *
| progress cbv [option_map Option.value Option.sequence idx] in *
| progress cbn [fst snd option_map indexof] in *
| rewrite Nat.add_0_r
| congruence
| break_innermost_match_step
| progress break_match
| progress break_match_hyps ].
Qed.

Lemma fst_merge_node {descr : description} (n : node idx) (d : t)
: fst (dag.merge_node n d) = match reverse_lookup d n with
| Some i => i
| None => size d
end.
Proof. cbv [merge_node]; break_innermost_match; reflexivity. Qed.

Lemma reverse_lookup_gensym s (d : t)
{ok : ok d}
{all_nodes_ok : all_nodes_ok d}
: dag.reverse_lookup d (gensym s d) = None.
Proof.
cbv [dag.all_nodes_ok] in *.
destruct (reverse_lookup d (gensym s d)) as [i|] eqn:H; [ | reflexivity ].
rewrite iff_reverse_lookup_lookup in H by assumption.
cbv [node_ok gensym] in *.
specialize_under_binders_by eassumption.
specialize_under_binders_by reflexivity.
apply lookup_value_size in H; trivial.
lia.
Qed.

Lemma lookup_merge_node_gensym {descr : description} s (d : t) i
{ok : ok d}
{all_nodes_ok : all_nodes_ok d}
: dag.lookup (snd (dag.merge_node (gensym s d) d)) i
= if (i =? size d)%N
then Some (gensym s d)
else dag.lookup d i.
Proof.
rewrite lookup_merge_node, reverse_lookup_gensym by assumption.
cbv [andb is_None].
break_innermost_match; try reflexivity; reflect_hyps; subst.
rewrite lookup_size_error in * by first [ assumption | lia ].
congruence.
Qed.

Lemma fst_merge_node_gensym {descr : description} s (d : t)
{ok : ok d}
{all_nodes_ok : all_nodes_ok d}
: fst (dag.merge_node (gensym s d) d) = size d.
Proof.
rewrite fst_merge_node, reverse_lookup_gensym by assumption; reflexivity.
Qed.

Lemma lookup_empty i : lookup empty i = None.
Proof. cbv [empty lookup]; now rewrite nth_error_nil_error. Qed.
Lemma reverse_lookup_empty n : reverse_lookup empty n = None.
Proof. reflexivity. Qed.
Lemma size_empty : size empty = 0%N.
Proof. reflexivity. Qed.

Lemma size_merge_node {descr:description} n (d:t)
: size (snd (merge_node n d)) = match reverse_lookup d n with Some _ => size d | None => N.succ (size d) end.
Proof.
cbv [merge_node size]; break_innermost_match; cbn [snd] in *; inversion_pair; subst; rewrite ?app_length; cbn [List.length]; lia.
Qed.

Lemma size_merge_node_le {descr:description} n (d:t)
: (size d <= size (snd (merge_node n d)))%N.
Proof.
rewrite size_merge_node; break_innermost_match; lia.
Qed.

Lemma size_merge_node_gensym {descr:description} s (d:t)
{ok : ok d}
{all_nodes_ok : all_nodes_ok d}
: size (snd (merge_node (gensym s d) d)) = N.succ (size d).
Proof. rewrite size_merge_node, reverse_lookup_gensym by assumption; reflexivity. Qed.

Global Instance empty_ok : ok empty | 10.
Proof.
repeat apply conj; cbv [size empty]; intros *; cbv [lookup];
rewrite ?nth_error_nil_error; cbn; try exact I;
intuition first [ congruence | lia ].
Qed.
Global Instance empty_all_nodes_ok : all_nodes_ok empty | 10.
Proof.
repeat intro; subst; rewrite lookup_empty in *; congruence.
Qed.
Global Instance merge_node_ok {descr:description} {n:node idx} {d : t} {dok : ok d} : ok (snd (merge_node n d)) | 10.
Proof.
repeat apply conj; cbv [size empty size_ok]; intros *.
all: rewrite ?lookup_merge_node, ?reverse_lookup_merge_node by assumption.
all: let tac :=
repeat first [ progress cbv [ok size_ok size merge_node lookup reverse_lookup] in *
| progress destruct_head'_and
| progress inversion_option
| progress subst
| exfalso; assumption
| progress inversion_pair
| progress cbn [fst snd List.length] in *
| break_innermost_match_step
| progress intros
| progress destruct_head'_ex
| progress destruct_head'_and
| progress reflect_hyps
| progress split_iff
| apply conj
| exact I
| progress cbv [option_map idx] in *
| progress break_match
| progress break_match_hyps
| lia
| congruence
| rewrite Nat2N.id in *
| rewrite N2Nat.id in *
| rewrite app_length
| progress specialize_under_binders_by reflexivity
| progress specialize_under_binders_by rewrite Nat2N.id
| progress destruct_head'_prod
| match goal with
| [ H : forall i n, match nth_error _ (N.to_nat i) with _ => _ end = _ -> _ |- _ ]
=> specialize (fun i => H (N.of_nat i))
| [ H : _ = Some _ |- _ ] => rewrite H in *
| [ H : N.of_nat _ = N.of_nat _ |- _ ] => apply (f_equal N.to_nat) in H
end
| solve [ exfalso; auto ] ] in
tac;
repeat match goal with
| [ H : _ = Some _ |- _ ] => progress specialize_all_ways_under_binders_by rewrite H
end;
tac.
Qed.
Global Instance merge_node_all_nodes_ok {descr:description} {n:node idx} {d : t} {dok : ok d} {dnok : all_nodes_ok d} {nok : node_ok (size d) n}
: all_nodes_ok (snd (merge_node n d)) | 10.
Proof.
cbv [all_nodes_ok] in *; intros i r; specialize (dnok i r).
rewrite lookup_merge_node in * by assumption.
cbv [andb is_None]; break_innermost_match; intros; inversion_option; reflect_hyps; subst; auto.
Qed.
Global Instance gensym_node_ok s d : node_ok (size d) (gensym s d) | 10.
Proof.
cbv [node_ok]; intros * H.
inversion H; subst; reflexivity.
Qed.
Global Hint Extern 1 (node_ok (size _) (gensym _ _)) => exact (@gensym_node_ok _ _) : typeclass_instances.

Lemma eq_fst_merge_node_change_descr {descr1 descr2 : description} (n : node idx) (d : t)
: fst (@merge_node descr1 n d) = fst (@merge_node descr2 n d).
Proof.
cbv [merge_node]; break_innermost_match; reflexivity.
Qed.

(* lemmas below here don't unfold the definitions *)
Lemma lookup_merge_node' {descr1 descr2 : description} (n : node idx) (d : t)
{ok : ok d}
: dag.lookup (snd (@dag.merge_node descr1 n d)) (fst (@dag.merge_node descr2 n d)) = Some n.
Proof.
rewrite lookup_merge_node, fst_merge_node by assumption.
cbv [andb is_None].
repeat first [ rewrite iff_reverse_lookup_lookup in * by assumption
| rewrite lookup_size_error in * by first [ assumption | lia ]
| progress inversion_option
| progress subst
| reflexivity
| progress reflect_hyps
| lia
| break_innermost_match_step ].
Qed.
End dag.
End Old.
Module New.
Module dag.
Module IdxMap <: UsualS := NMap <+ FMapFacts.Facts <+ Facts_RemoveHints <+ FMapFacts.AdditionalFacts.
Module ListIdxMap <: UsualS := ListNMap.
Expand Down Expand Up @@ -1081,8 +793,6 @@ Module dag.
| break_innermost_match_step ].
Qed.
End dag.
End New.
Export Old.
Global Arguments dag.t : simpl never.
Global Arguments dag.empty : simpl never.
Global Arguments dag.size : simpl never.
Expand Down

0 comments on commit fd23370

Please sign in to comment.