# Clone repo
git clone https://github.com/ml-jku/autoregressive_activity_prediction.git
# Move into dir
cd ./autoregressive_activity_prediction
# Download and unzip assets folder (~600 MB zipped, ~4 GB unzipped)
pip install gdown
gdown https://drive.google.com/uc?id=1ZW1zzNEjrFmhCb4L0z2J2RWBOB9d3pAe
unzip assets.zip
# Download and unzip preprocessed fsmol data (~400 MB zipped, ~5 GB unzipped)
# Move to location at which data should be stored
cd path_to_preprocessed_fsmol_data_dir
gdown https://drive.google.com/uc?id=1SEi8dkkdXudWzRFAYABBckk12tNWfGtX
unzip preprocessed_data
# config location: .src/autoregr_inf_experiment/cfg.py
# Base settings
seed: int = 1234
# Data
data_path: str = "path_to_preprocessed_fsmol_data_dir" #TODO set path
nbr_support_set_candidates: int = 32
inference_batch_size: int = 64
# Experiment
device='gpu'
# Results
results_path: str = "" #TODO set path
...
# Create conda environment
conda env create -f requirements.yml -n your_env_name
# Activate conda env
conda activate
Add suitable output paths for the experiment here: .src/autoregr_inf_experiment/cfg.py
.
# Navigate into directory
cd .src/autoregr_inf_experiment/
# Run autoregressive inference experiment
python experiment_manager.py
# Create results by running the evaluation script
python evaluation.py
For different experiment variants see the experiment_manager.py file.