Skip to content

modulabs/projects4students

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Projects for students

  • Final update: 2019. 05. 23.
  • All right reserved @ ModuLabs 2019

Getting Started

Prerequisites

  • TensorFlow above version 1.13
  • Python 3.6 (recommend Anaconda)
  • Python libraries:
    • numpy, matplotblib, pandas
    • PIL, imageio for images
    • fix_yahoo_finance for stock market prediction
  • Jupyter notebook
  • Ubuntu, OS X and Windows OS

CNN projects (Image segmentation)

Task

  • GIANA dataset으로 위내시경 이미지에서 용종을 segmentation 해보자.
  • 데이터 불러오기를 제외한 딥러닝 트레이닝 과정을 직접 구현해보는 것이 목표 입니다.
  • This code is borrowed from TensorFlow tutorials/Image Segmentation which is made of tf.keras.layers and tf.enable_eager_execution().
  • You can see the detail description tutorial link

Dataset

  • I use below dataset instead of carvana-image-masking-challenge dataset in TensorFlow Tutorials which is a kaggle competition dataset.
    • carvana-image-masking-challenge dataset: Too large dataset (14GB)
  • Gastrointestinal Image ANAlys Challenges (GIANA) Dataset (345MB)
    • Train data: 300 images with RGB channels (bmp format)
    • Train lables: 300 images with 1 channels (bmp format)
    • Image size: 574 x 500
  • Training시 image size는 256으로 resize

Baseline code

  • Dataset: train, test로 split
  • Input data shape: (batch_size, 256, 256, 3)
  • Output data shape: (batch_size, 256, 256, 1)
  • Architecture:
  • Training
    • tf.data.Dataset 사용
    • model.fit() 사용 for weight update
  • Evaluation
    • MeanIOU: Image Segmentation에서 많이 쓰이는 evaluation measure
    • tf.version 1.13 API: tf.metrics.mean_iou
      • tf.enable_eager_execution()이 작동하지 않음
      • 따라서 예전 방식대로 tf.Session()을 이용하여 작성하거나 아래와 같이 2.0 version으로 작성하여야 함
    • tf.version 2.0 API: tf.keras.metrics.MeanIoU

Try some techniques

  • Change model architectures (Custom model)
    • Try another models (U-Net 모델)
  • Various regularization methods

RNN projects (Sentiment classification)

Task

  • IMDB 영화사이트에서 50000개의 영화평을 가지고 positive/negative인지 구분해보자.
  • 데이터 불러오기를 제외한 딥러닝 트레이닝 과정을 직접 구현해보는 것이 목표 입니다.

Dataset

Base code

  • Dataset: train, val, test로 split
  • Input data shape: (batch_size, max_sequence_length)
  • Output data shape: (batch_size, 1)
  • Architecture:
    • RNN을 이용한 간단한 classification 모델 가이드
    • Embedding - SimpleRNN - Dense (with Sigmoid)
    • tf.keras.layers 사용
  • Training
    • model.fit 사용
  • Evaluation
    • model.evaluate 사용 for test dataset

Try some techniques

  • Training-epochs 조절
  • Change model architectures (Custom model)
    • Use another cells (LSTM, GRU, etc.)
    • Use dropout layers
  • Embedding size 조절
    • 또는 one-hot vector로 학습
  • Number of words in the vocabulary 변화
  • pad 옵션 변화
  • Data augmentation (if possible)

Authors

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published