Skip to content

Commit

Permalink
Add support for running some key bitops functions on integer Tensors
Browse files Browse the repository at this point in the history
While we already supported most of nim's std/math features in Arraymancer, we did not support any of the std/bitops operators and procedures yet. These are very useful to implement some important algorithms such as gray coding and others.

This commit adds some of the most important std/bitops features. These will soon be used in `impulse` to implement some new algorithms.
  • Loading branch information
AngelEzquerra committed Aug 5, 2024
1 parent 35adfc1 commit 2b4bc8e
Show file tree
Hide file tree
Showing 3 changed files with 202 additions and 0 deletions.
2 changes: 2 additions & 0 deletions src/arraymancer/tensor.nim
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@ import ./laser/dynamic_stack_arrays,
./tensor/math_functions,
./tensor/aggregate,
./tensor/algorithms,
./tensor/bitops_functions,
./tensor/lapack,
./tensor/optim_ops_fusion,
./tensor/syntactic_sugar,
Expand Down Expand Up @@ -67,6 +68,7 @@ export dynamic_stack_arrays,
math_functions,
aggregate,
algorithms,
bitops_functions,
lapack,
optim_ops_fusion,
syntactic_sugar,
Expand Down
131 changes: 131 additions & 0 deletions src/arraymancer/tensor/bitops_functions.nim
Original file line number Diff line number Diff line change
@@ -0,0 +1,131 @@
# Copyright 2017 the Arraymancer contributors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import ./data_structure,
./higher_order_applymap,
./shapeshifting,
./ufunc
import std / bitops

export bitops

proc `shr`*[T1, T2: SomeInteger](t: Tensor[T1], value: T2): Tensor[T1] {.noinit.} =
## Broadcasted tensor-value `shr` (i.e. shift right) operator
##
## This is similar to numpy's `right_shift` and Matlab's `bitsra`
## (or `bitshift` with a positive shift value).
t.map_inline(x shr value)

proc `shr`*[T1, T2: SomeInteger](value: T1, t: Tensor[T2]): Tensor[T2] {.noinit.} =
## Broadcasted value-tensor `shr` (i.e. shift right) operator
##
## This is similar to numpy's `right_shift` and Matlab's `bitsra`
## (or `bitshift` with a positive shift value).
t.map_inline(value shr x)

proc `shr`*[T: SomeInteger](t1, t2: Tensor[T]): Tensor[T] {.noinit.} =
## Tensor element-wise `shr` (i.e. shift right) broadcasted operator
##
## This is similar to numpy's `right_shift` and Matlab's `bitsra`
## (or `bitshift` with a positive shift value).
let (tmp1, tmp2) = broadcast2(t1, t2)
result = map2_inline(tmp1, tmp2, x shr y)

proc `shl`*[T1, T2: SomeInteger](t: Tensor[T1], value: T2): Tensor[T1] {.noinit.} =
## Broadcasted tensor-value `shl` (i.e. shift left) operator
##
## This is similar to numpy's `left_shift` and Matlab's `bitsla`
## (or `bitshift` with a negative shift value).
t.map_inline(x shl value)

proc `shl`*[T1, T2: SomeInteger](value: T1, t: Tensor[T2]): Tensor[T2] {.noinit.} =
## Broadcasted value-tensor `shl` (i.e. shift left) operator
##
## This is similar to numpy's `left_shift` and Matlab's `bitsla`
## (or `bitshift` with a negative shift value).
t.map_inline(value shl x)

proc `shl`*[T: SomeInteger](t1, t2: Tensor[T]): Tensor[T] {.noinit.} =
## Tensor element-wise `shl` (i.e. shift left) broadcasted operator
##
## This is similar to numpy's `left_shift` and Matlab's `bitsla`
## (or `bitshift` with a negative shift value).
let (tmp1, tmp2) = broadcast2(t1, t2)
result = map2_inline(tmp1, tmp2, x shl y)

makeUniversal(bitnot,
docSuffix="""Element-wise `bitnot` procedure
This is similar to numpy's `bitwise_not` and Matlab's `bitnot`.""")

proc bitand*[T](t: Tensor[T], value: T): Tensor[T] {.noinit.} =
## Broadcasted tensor-value `bitand` procedure
##
## This is similar to numpy's `bitwise_and` and Matlab's `bitand`.
t.map_inline(bitand(x, value))

proc bitand*[T](value: T, t: Tensor[T]): Tensor[T] {.noinit.} =
## Broadcasted value-tensor `bitand` procedure
##
## This is similar to numpy's `bitwise_and` and Matlab's `bitand`.
t.map_inline(bitand(value, x))

proc bitand*[T](t1, t2: Tensor[T]): Tensor[T] {.noinit.} =
## Tensor element-wise `bitand` procedure
##
## This is similar to numpy's `bitwise_and` and Matlab's `bitand`.
let (tmp1, tmp2) = broadcast2(t1, t2)
result = map2_inline(tmp1, tmp2, bitand(x, y))


proc bitor*[T](t: Tensor[T], value: T): Tensor[T] {.noinit.} =
## Broadcasted tensor-value `bitor` procedure
##
## This is similar to numpy's `bitwise_or` and Matlab's `bitor`.
t.map_inline(bitor(x, value))

proc bitor*[T](value: T, t: Tensor[T]): Tensor[T] {.noinit.} =
## Broadcasted value-tensor `bitor` procedure
##
## This is similar to numpy's `bitwise_or` and Matlab's `bitor`.
t.map_inline(bitor(value, x))

proc bitor*[T](t1, t2: Tensor[T]): Tensor[T] {.noinit.} =
## Tensor element-wise `bitor` procedure
##
## This is similar to numpy's `bitwise_or` and Matlab's `bitor`.
let (tmp1, tmp2) = broadcast2(t1, t2)
map2_inline(tmp1, tmp2, bitor(x, y))

proc bitxor*[T](t: Tensor[T], value: T): Tensor[T] {.noinit.} =
## Broadcasted tensor-value `bitxor` procedure
##
## This is similar to numpy's `bitwise_xor` and Matlab's `bitxor`.
t.map_inline(bitxor(x, value))

proc bitxor*[T](value: T, t: Tensor[T]): Tensor[T] {.noinit.} =
## Broadcasted value-tensor `bitxor` procedure
##
## This is similar to numpy's `bitwise_xor` and Matlab's `bitxor`.
t.map_inline(bitxor(value, x))

proc bitxor*[T](t1, t2: Tensor[T]): Tensor[T] {.noinit.} =
## Tensor element-wise `bitxor` procedure
##
## This is similar to numpy's `bitwise_xor` and Matlab's `bitxor`.
let (tmp1, tmp2) = broadcast2(t1, t2)
map2_inline(tmp1, tmp2, bitxor(x, y))

makeUniversal(reverseBits,
docSuffix="Element-wise `reverseBits` procedure")
69 changes: 69 additions & 0 deletions tests/tensor/test_bitops_functions.nim
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
# Copyright 2017 the Arraymancer contributors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import ../../src/arraymancer
import std / unittest

proc main() =
suite "Bitops functions":
test "bitnot":
let t = [0, 1, 57, 1022, -100].toTensor
let expected = [-1, -2, -58, -1023, 99].toTensor
check: t.bitnot == expected

test "shr":
let t1 = [0, 1, 57, 1022, -100].toTensor
let t2 = [0, 1, 2, 3, 4].toTensor
check: t1 shr 3 == [0, 0, 7, 127, -13].toTensor
check: 1024 shr t2 == [1024, 512, 256, 128, 64].toTensor
check: t1 shr t2 == [0, 0, 14, 127, -7].toTensor

test "shl":
let t1 = [0, 1, 57, 1022, -100].toTensor
let t2 = [0, 1, 2, 3, 4].toTensor
check: t1 shl 3 == [0, 8, 456, 8176, -800].toTensor
check: 3 shl t2 == [3, 6, 12, 24, 48].toTensor
check: t1 shl t2 == [0, 2, 228, 8176, -1600].toTensor

test "bitand":
let t1 = [0, 1, 57, 1022, -100].toTensor
let t2 = [0, 2, 7, 15, 11].toTensor
check: bitand(t1, 0b010_110_101) == [0, 1, 49, 180, 148].toTensor
check: bitand(t1, 0b010_110_101) == bitand(0b010_110_101, t1)
check: bitand(t1, t2) == [0, 0, 1, 14, 8].toTensor
check: bitand(t1, t2) == bitand(t1, t2)

test "bitor":
let t1 = [0, 1, 57, 1022, -100].toTensor
let t2 = [0, 2, 7, 15, 11].toTensor
check: bitor(t1, 0b010_110_101) == [181, 181, 189, 1023, -67].toTensor
check: bitor(t1, 0b010_110_101) == bitor(0b010_110_101, t1)
check: bitor(t1, t2) == [0, 3, 63, 1023, -97].toTensor
check: bitor(t1, t2) == bitor(t1, t2)

test "bitxor":
let t1 = [0, 1, 57, 1022, -100].toTensor
let t2 = [0, 2, 7, 15, 11].toTensor
check: bitxor(t1, 0b010_110_101) == [181, 180, 140, 843, -215].toTensor
check: bitxor(t1, 0b010_110_101) == bitxor(0b010_110_101, t1)
check: bitxor(t1, t2) == [0, 3, 62, 1009, -105].toTensor
check: bitxor(t1, t2) == bitxor(t1, t2)

test "reverse_bits":
let t = [0, 1, 57, 1022].toTensor(uint16)
let expected = [0, 32768, 39936, 32704].toTensor(uint16)
check: t.reverse_bits == expected

main()
GC_fullCollect()

0 comments on commit 2b4bc8e

Please sign in to comment.