Skip to content

Commit

Permalink
Merging dev branch back before merging into main dev branch.
Browse files Browse the repository at this point in the history
Merge branch 'dev' into competing_hazards_mortality_order
# Please enter a commit message to explain why this merge is necessary,
# especially if it merges an updated upstream into a topic branch.
#
# Lines starting with '#' will be ignored, and an empty message aborts
# the commit.
  • Loading branch information
RJSheppard committed May 1, 2024
2 parents 5077d4b + 1111500 commit a9b495c
Show file tree
Hide file tree
Showing 90 changed files with 7,989 additions and 1,241 deletions.
2 changes: 2 additions & 0 deletions .Rbuildignore
Original file line number Diff line number Diff line change
Expand Up @@ -10,3 +10,5 @@ LICENSE.md
codecov.yml
.github
^data-raw$
^doc$
^Meta$
2 changes: 2 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -10,3 +10,5 @@ malariasimulation_*.tar.gz
/build/
doc
inst/doc
/doc/
/Meta/
34 changes: 30 additions & 4 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Package: malariasimulation
Title: An individual based model for malaria
Version: 1.6.0
Version: 1.6.1
Authors@R: c(
person(
given = "Giovanni",
Expand Down Expand Up @@ -32,6 +32,30 @@ Authors@R: c(
role = c('aut'),
email = 'r.fitzjohn@imperial.ac.uk'
),
person(
given = "Richard",
family = "Sheppard",
role = c('aut'),
email = 'r.sheppard11@imperial.ac.uk'
),
person(
given = "Tom",
family = "Brewer",
role = c('aut'),
email = 'thomas.brewer16@imperial.ac.uk'
),
person(
given = "Kelly",
family = "McCain",
role = c('aut'),
email = 'k.mccain22@imperial.ac.uk'
),
person(
given = "Lydia",
family = "Haile",
role = c('aut'),
email = 'l.haile@imperial.ac.uk'
),
person(
given = "Imperial College of Science, Technology and Medicine",
family = "",
Expand All @@ -45,13 +69,15 @@ LazyData: true
Remotes:
mrc-ide/malariaEquilibrium,
mrc-ide/individual
Additional_repositories:
https://mrc-ide.r-universe.dev
Imports:
individual (>= 0.1.7),
individual (>= 0.1.16),
malariaEquilibrium (>= 1.0.1),
Rcpp,
statmod,
MASS,
dqrng,
dqrng (>= 0.3.2.2),
sitmo,
BH,
R6,
Expand All @@ -67,7 +93,7 @@ Suggests:
ggplot2,
covr,
mgcv
RoxygenNote: 7.2.3
RoxygenNote: 7.3.1
Roxygen: list(markdown = TRUE)
LinkingTo:
Rcpp,
Expand Down
1 change: 1 addition & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@ export(rtss_profile)
export(run_metapop_simulation)
export(run_simulation)
export(run_simulation_with_repetitions)
export(set_antimalarial_resistance)
export(set_bednets)
export(set_carrying_capacity)
export(set_clinical_treatment)
Expand Down
14 changes: 11 additions & 3 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -1,12 +1,20 @@
# malariasimulation 1.6.0
# malariasimulation 1.6.1 (wip)

* Fix MDA bug where undetectable asymptomatics are treated
* Fix bug in competing hazards between mass and EPI vaccines. Where individuals
can be enrolled onto both strategies if applied on the same timestep.
* Fix bug with min_wait. Min wait was working off of the final primary dose. It
now works of of the first dose.

# malariasimulation 1.5.0
# malariasimulation 1.6.0

* Fix MDA bug where undetectable asymptomatics are treated
* New vignettes
* Progress bar for long simulations
* Individual mosquitoes off by default
* New vaccination code:
* pre-erythrocytic vaccine functions have been renamed to pev
* pev functions have PEVProfiles for alternate pev vaccines and boosters
* Specify carrying capacity over time

# malariasimulation 1.4.0

Expand Down
32 changes: 32 additions & 0 deletions R/RcppExports.R
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,14 @@ adult_mosquito_model_update <- function(model, mu, foim, susceptible, f) {
invisible(.Call(`_malariasimulation_adult_mosquito_model_update`, model, mu, foim, susceptible, f))
}

adult_mosquito_model_save_state <- function(model) {
.Call(`_malariasimulation_adult_mosquito_model_save_state`, model)
}

adult_mosquito_model_restore_state <- function(model, state) {
invisible(.Call(`_malariasimulation_adult_mosquito_model_restore_state`, model, state))
}

create_adult_solver <- function(model, init, r_tol, a_tol, max_steps) {
.Call(`_malariasimulation_create_adult_solver`, model, init, r_tol, a_tol, max_steps)
}
Expand Down Expand Up @@ -37,10 +45,18 @@ rainfall <- function(t, g0, g, h, floor) {
.Call(`_malariasimulation_rainfall`, t, g0, g, h, floor)
}

exponential_process_cpp <- function(variable, rate) {
.Call(`_malariasimulation_exponential_process_cpp`, variable, rate)
}

solver_get_states <- function(solver) {
.Call(`_malariasimulation_solver_get_states`, solver)
}

solver_set_states <- function(solver, t, state) {
invisible(.Call(`_malariasimulation_solver_set_states`, solver, t, state))
}

solver_step <- function(solver) {
invisible(.Call(`_malariasimulation_solver_step`, solver))
}
Expand All @@ -57,10 +73,26 @@ timeseries_push <- function(timeseries, value, timestep) {
invisible(.Call(`_malariasimulation_timeseries_push`, timeseries, value, timestep))
}

timeseries_save_state <- function(timeseries) {
.Call(`_malariasimulation_timeseries_save_state`, timeseries)
}

timeseries_restore_state <- function(timeseries, state) {
invisible(.Call(`_malariasimulation_timeseries_restore_state`, timeseries, state))
}

random_seed <- function(seed) {
invisible(.Call(`_malariasimulation_random_seed`, seed))
}

random_save_state <- function() {
.Call(`_malariasimulation_random_save_state`)
}

random_restore_state <- function(state) {
invisible(.Call(`_malariasimulation_random_restore_state`, state))
}

bernoulli_multi_p_cpp <- function(p) {
.Call(`_malariasimulation_bernoulli_multi_p_cpp`, p)
}
Expand Down
146 changes: 146 additions & 0 deletions R/antimalarial_resistance.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,146 @@
#' @title Parameterise antimalarial resistance
#' @description
#' Parameterise antimalarial resistance
#'
#' @param parameters the model parameters
#' @param drug the index of the drug which resistance is being set, as set by the set_drugs() function, in the parameter list
#' @param timesteps vector of time steps for each update to resistance proportion and resistance outcome probability
#' @param artemisinin_resistance_proportion vector of updates to the proportions of infections that are artemisinin resistant at time t
#' @param partner_drug_resistance_proportion vector of updates to the proportions of infections that are partner-drug resistant at time t
#' @param slow_parasite_clearance_probability vector of updates to the proportion of artemisinin-resistant infections that result in early treatment failure
#' @param early_treatment_failure_probability vector of updates to the proportion of artemisinin-resistant infections that result in slow parasite clearance
#' @param late_clinical_failure_probability vector of updates to the proportion of partner-drug-resistant infections that result in late clinical failure
#' @param late_parasitological_failure_probability vector of updates to the proportion of partner-drug-resistant infections that result in late parasitological failure
#' @param reinfection_during_prophylaxis_probability vector of updates to the proportion of partner-drug-resistant infections that result in reinfection during prophylaxis
#' @param slow_parasite_clearance_time single value representing the mean time individual's experiencing slow parasite clearance reside in the treated state
#' @export
set_antimalarial_resistance <- function(parameters,
drug,
timesteps,
artemisinin_resistance_proportion,
partner_drug_resistance_proportion,
slow_parasite_clearance_probability,
early_treatment_failure_probability,
late_clinical_failure_probability,
late_parasitological_failure_probability,
reinfection_during_prophylaxis_probability,
slow_parasite_clearance_time) {

if(any(partner_drug_resistance_proportion > 0,
late_clinical_failure_probability > 0,
late_parasitological_failure_probability > 0,
reinfection_during_prophylaxis_probability > 0)) {
stop("Parameters set for unimplemented feature - late clinical failure, late parasitological failure, or reinfection during prophylaxis")
}

if(any(c(length(artemisinin_resistance_proportion),
length(partner_drug_resistance_proportion),
length(slow_parasite_clearance_probability),
length(early_treatment_failure_probability),
length(late_clinical_failure_probability),
length(late_parasitological_failure_probability),
length(reinfection_during_prophylaxis_probability)) != length(timesteps))) {
stop("Length of one or more resistance parameter vectors does not match time steps specified for update")
}

if(any(artemisinin_resistance_proportion < 0 | artemisinin_resistance_proportion > 1 |
partner_drug_resistance_proportion < 0 | partner_drug_resistance_proportion > 1)) {
stop("Artemisinin and partner-drug resistance proportions must fall between 0 and 1")
}

if(any(slow_parasite_clearance_probability < 0 | slow_parasite_clearance_probability > 1 |
early_treatment_failure_probability < 0 | early_treatment_failure_probability > 1 |
late_clinical_failure_probability < 0 | late_clinical_failure_probability > 1 |
late_parasitological_failure_probability < 0 | late_parasitological_failure_probability > 1 |
reinfection_during_prophylaxis_probability < 0 | reinfection_during_prophylaxis_probability > 1)) {
stop("Resistance outcome probabilities must fall between 0 and 1")
}

if(length(slow_parasite_clearance_time) != 1) {
stop("Error: length of slow_parasite_clearance_time not equal to 1")
}

if(slow_parasite_clearance_time <= 0) {
stop("Error: slow_parasite_clearance_time is non-positive")
}

parameters$antimalarial_resistance <- TRUE

n_drugs <- length(parameters$drug_efficacy)

if (drug < 1 | drug > n_drugs) {
stop('Drug index is invalid, please set drugs using set_drugs')
}

drug_index <- which(parameters$antimalarial_resistance_drug == drug)

if (length(drug_index) == 0) {
drug_index <- length(parameters$antimalarial_resistance_drug) + 1
}

parameters$antimalarial_resistance_drug[[drug_index]] <- drug
parameters$antimalarial_resistance_timesteps[[drug_index]] <- timesteps
parameters$artemisinin_resistance_proportion[[drug_index]] <- artemisinin_resistance_proportion
parameters$partner_drug_resistance_proportion[[drug_index]] <- partner_drug_resistance_proportion
parameters$slow_parasite_clearance_probability[[drug_index]] <- slow_parasite_clearance_probability
parameters$early_treatment_failure_probability[[drug_index]] <- early_treatment_failure_probability
parameters$late_clinical_failure_probability[[drug_index]] <- late_clinical_failure_probability
parameters$late_parasitological_failure_probability[[drug_index]] <- late_parasitological_failure_probability
parameters$reinfection_during_prophylaxis_probability[[drug_index]] <- reinfection_during_prophylaxis_probability
parameters$dt_slow_parasite_clearance[[drug_index]] <- slow_parasite_clearance_time

return(parameters)

}

#' @title Retrieve resistance parameters
#' @description
#' Retrieve the resistance parameters associated with the drug each individual receiving clinical
#' treatment has been administered in the current time step.
#'
#' @param parameters the model parameters
#' @param drugs vector of integers representing the drugs administered to each individual receiving treatment
#' @param timestep the current time step
get_antimalarial_resistance_parameters <- function(parameters, drugs, timestep) {

if(!parameters$antimalarial_resistance) {
stop("Error: Antimalarial resistance has not been parameterised; antimalarial_resistance = FALSE")
}

blank_vector <- numeric(length = length(drugs))
artemisinin_resistance_proportion <- blank_vector
partner_drug_resistance_proportion <- blank_vector
slow_parasite_clearance_probability <- blank_vector
early_treatment_failure_probability <- blank_vector
late_clinical_failure_probability <- blank_vector
late_parasitological_failure_probability <- blank_vector
reinfection_during_prophylaxis_probability <- blank_vector
dt_slow_parasite_clearance <- rep(parameters$dt, length = length(drugs))

for(i in seq_along(parameters$antimalarial_resistance_drug)) {
drug <- parameters$antimalarial_resistance_drug[[i]]
treated_with_drug <- which(drugs == drug)
resistance_timestep <- match_timestep(ts = parameters$antimalarial_resistance_timesteps[[i]], t = timestep)
artemisinin_resistance_proportion[treated_with_drug] <- parameters$artemisinin_resistance_proportion[[i]][resistance_timestep]
partner_drug_resistance_proportion[treated_with_drug] <- parameters$partner_drug_resistance_proportion[[i]][resistance_timestep]
slow_parasite_clearance_probability[treated_with_drug] <- parameters$slow_parasite_clearance_probability[[i]][resistance_timestep]
early_treatment_failure_probability[treated_with_drug] <- parameters$early_treatment_failure_probability[[i]][resistance_timestep]
late_clinical_failure_probability[treated_with_drug] <- parameters$late_clinical_failure_probability[[i]][resistance_timestep]
late_parasitological_failure_probability[treated_with_drug] <- parameters$late_parasitological_failure_probability[[i]][resistance_timestep]
reinfection_during_prophylaxis_probability[treated_with_drug] <- parameters$reinfection_during_prophylaxis_probability[[i]][resistance_timestep]
dt_slow_parasite_clearance[treated_with_drug] <- parameters$dt_slow_parasite_clearance[[i]]
}

resistance_parameters <- list()
resistance_parameters$artemisinin_resistance_proportion <- artemisinin_resistance_proportion
resistance_parameters$partner_drug_resistance_proportion <- partner_drug_resistance_proportion
resistance_parameters$slow_parasite_clearance_probability <- slow_parasite_clearance_probability
resistance_parameters$early_treatment_failure_probability <- early_treatment_failure_probability
resistance_parameters$late_clinical_failure_probability <- late_clinical_failure_probability
resistance_parameters$late_parasitological_failure_probability <- late_parasitological_failure_probability
resistance_parameters$reinfection_during_prophylaxis_probability <- reinfection_during_prophylaxis_probability
resistance_parameters$dt_slow_parasite_clearance <- dt_slow_parasite_clearance

return(resistance_parameters)

}
8 changes: 4 additions & 4 deletions R/biting_process.R
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,7 @@ simulate_bites <- function(

for (s_i in seq_along(parameters$species)) {
species_name <- parameters$species[[s_i]]
solver_states <- solver_get_states(solvers[[s_i]])
solver_states <- solvers[[s_i]]$get_states()
p_bitten <- prob_bitten(timestep, variables, s_i, parameters)
Q0 <- parameters$Q0[[s_i]]
W <- average_p_successful(p_bitten$prob_bitten_survives, .pi, Q0)
Expand Down Expand Up @@ -167,7 +167,7 @@ simulate_bites <- function(
if (parameters$individual_mosquitoes) {
# update the ODE with stats for ovoposition calculations
aquatic_mosquito_model_update(
models[[s_i]],
models[[s_i]]$.model,
species_index$size(),
f,
mu
Expand All @@ -189,7 +189,7 @@ simulate_bites <- function(
)
} else {
adult_mosquito_model_update(
models[[s_i]],
models[[s_i]]$.model,
mu,
foim,
solver_states[[ADULT_ODE_INDICES['Sm']]],
Expand Down Expand Up @@ -235,7 +235,7 @@ calculate_infectious <- function(species, solvers, variables, parameters) {
)
)
}
calculate_infectious_compartmental(solver_get_states(solvers[[species]]))
calculate_infectious_compartmental(solvers[[species]]$get_states())
}

calculate_infectious_individual <- function(
Expand Down
Loading

0 comments on commit a9b495c

Please sign in to comment.