Skip to content

Commit

Permalink
Fix bug with pev min_wait:
Browse files Browse the repository at this point in the history
 * Update pev-epi min_wait test to directly check sample population
 * Update pe-epi  min_wait test to check that pev_timestep is being updated
   on the first dose
 * Copy pev-epi min_wait test to mass pev
 * Update pev and epi processes to calculate targets based on time of first dose
 * Update infection immunity function to calculate pev immunity only
   after 3rd dose
  • Loading branch information
giovannic committed Oct 2, 2023
1 parent efd3dfc commit e7b5c4d
Show file tree
Hide file tree
Showing 8 changed files with 143 additions and 41 deletions.
2 changes: 2 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,8 @@

* Fix bug in competing hazards between mass and EPI vaccines. Where individuals
can be enrolled onto both strategies if applied on the same timestep.
* Fix bug with min_wait. Min wait was working off of the final primary dose. It
now works of of the first dose.

# malariasimulation 1.6.0

Expand Down
5 changes: 3 additions & 2 deletions R/human_infection.R
Original file line number Diff line number Diff line change
Expand Up @@ -129,9 +129,10 @@ calculate_infections <- function(

# calculate vaccine efficacy
vaccine_efficacy <- rep(0, length(source_vector))
vaccine_times <- variables$pev_timestep$get_values(source_vector)
vaccinated <- vaccine_times > -1
vaccine_times <- variables$last_eff_pev_timestep$get_values(source_vector)
pev_profile <- variables$pev_profile$get_values(source_vector)
# get vector of individuals who have received their 3rd dose
vaccinated <- vaccine_times > -1
pev_profile <- pev_profile[vaccinated]
if (length(vaccinated) > 0) {
antibodies <- calculate_pev_antibodies(
Expand Down
3 changes: 2 additions & 1 deletion R/mortality_processes.R
Original file line number Diff line number Diff line change
Expand Up @@ -106,7 +106,8 @@ reset_target <- function(variables, events, target, state, timestep) {
variables$drug_time$queue_update(-1, target)

# vaccination
variables$pev_timestep$queue_update(-1, target)
variables$last_pev_timestep$queue_update(-1, target)
variables$last_eff_pev_timestep$queue_update(-1, target)
variables$pev_profile$queue_update(-1, target)
variables$tbv_vaccinated$queue_update(-1, target)

Expand Down
23 changes: 19 additions & 4 deletions R/pev.R
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ create_epi_pev_process <- function(
if (parameters$pev_epi_min_wait == 0) {
target <- to_vaccinate$to_vector()
} else {
not_recently_vaccinated <- variables$pev_timestep$get_index_of(
not_recently_vaccinated <- variables$last_pev_timestep$get_index_of(
a = max(timestep - parameters$pev_epi_min_wait, 0),
b = timestep
)$not(TRUE)
Expand All @@ -56,6 +56,9 @@ create_epi_pev_process <- function(
)
]

# Update the latest vaccination time
variables$last_pev_timestep$queue_update(timestep, target)

schedule_vaccination(
target,
events,
Expand Down Expand Up @@ -91,7 +94,7 @@ create_mass_pev_listener <- function(
if (parameters$mass_pev_min_wait == 0) {
target <- in_age_group
} else {
not_recently_vaccinated <- variables$pev_timestep$get_index_of(
not_recently_vaccinated <- variables$last_pev_timestep$get_index_of(
a = max(timestep - parameters$mass_pev_min_wait, 0),
b = timestep
)$not(TRUE)
Expand All @@ -116,6 +119,11 @@ create_mass_pev_listener <- function(
correlations
)
]

# Update the latest vaccination time
variables$last_pev_timestep$queue_update(timestep, target)

# Schedule future doses
schedule_vaccination(
target,
events,
Expand Down Expand Up @@ -162,7 +170,7 @@ schedule_vaccination <- function(
create_pev_efficacy_listener <- function(variables, pev_profile_index) {
function(timestep, target) {
if (target$size() > 0) {
variables$pev_timestep$queue_update(timestep, target)
variables$last_eff_pev_timestep$queue_update(timestep, target)
variables$pev_profile$queue_update(pev_profile_index, target)
}
}
Expand All @@ -185,7 +193,8 @@ create_pev_booster_listener <- function(
force(coverage)
function(timestep, target) {
target <- sample_bitset(target, coverage)
variables$pev_timestep$queue_update(timestep, target)
variables$last_pev_timestep$queue_update(timestep, target)
variables$last_eff_pev_timestep$queue_update(timestep, target)
variables$pev_profile$queue_update(pev_profile_index, target)
renderer$render(render_name, target$size(), timestep)

Expand Down Expand Up @@ -240,6 +249,12 @@ attach_pev_dose_listeners <- function(
dose_events[[d]]$add_listener(
create_dosage_renderer(renderer, strategy, d)
)
# update last vaccination on every primary dose
dose_events[[d]]$add_listener(
function(t, target) {
variables$last_pev_timestep$queue_update(t, target)
}
)
if (d == length(dose_events)) {
dose_events[[d]]$add_listener(
create_pev_efficacy_listener(
Expand Down
20 changes: 12 additions & 8 deletions R/variables.R
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
#' @title Define model variables
#' @description
#' @title Define model variables #' @description
#' create_variables creates the human and mosquito variables for
#' the model. Variables are used to track real data for each individual over
#' time, they are read and updated by processes
Expand All @@ -18,10 +17,13 @@
#' * ID - Acquired immunity to detectability
#' * zeta - Heterogeneity of human individuals
#' * zeta_group - Discretised heterogeneity of human individuals
#' * pev_timestep - The timestep of the last pev vaccination (-1 if there
#' haven't been any)
#' * pev_profile - The index of the profile of the last administered pev vaccine
#' (-1 if there haven't been any)
#' * last_pev_timestep - The timestep of the last pev vaccination (-1 if there
#' * last_eff_pev_timestep - The timestep of the last efficacious pev
#' vaccination, including final primary dose and booster doses (-1 if there have not been any)
#' * pev_profile - The index of the efficacy profile of any pev vaccinations.
#' Not set until the final primary dose.
#' This is only set on the final primary dose and subsequent booster doses
#' (-1 otherwise)
#' * tbv_vaccinated - The timstep of the last tbv vaccination (-1 if there
#' haven't been any
#' * net_time - The timestep when a net was last put up (-1 if never)
Expand Down Expand Up @@ -188,7 +190,8 @@ create_variables <- function(parameters) {
drug <- individual::IntegerVariable$new(rep(0, size))
drug_time <- individual::IntegerVariable$new(rep(-1, size))

pev_timestep <- individual::IntegerVariable$new(rep(-1, size))
last_pev_timestep <- individual::IntegerVariable$new(rep(-1, size))
last_eff_pev_timestep <- individual::IntegerVariable$new(rep(-1, size))
pev_profile <- individual::IntegerVariable$new(rep(-1, size))

tbv_vaccinated <- individual::DoubleVariable$new(rep(-1, size))
Expand All @@ -215,7 +218,8 @@ create_variables <- function(parameters) {
infectivity = infectivity,
drug = drug,
drug_time = drug_time,
pev_timestep = pev_timestep,
last_pev_timestep = last_pev_timestep,
last_eff_pev_timestep = last_eff_pev_timestep,
pev_profile = pev_profile,
tbv_vaccinated = tbv_vaccinated,
net_time = net_time,
Expand Down
4 changes: 2 additions & 2 deletions tests/testthat/test-infection-integration.R
Original file line number Diff line number Diff line change
Expand Up @@ -133,7 +133,7 @@ test_that('calculate_infections works various combinations of drug and vaccinati
),
drug = individual::DoubleVariable$new(c(1, 2, 0, 0)),
drug_time = individual::DoubleVariable$new(c(20, 30, -1, -1)),
pev_timestep = individual::DoubleVariable$new(c(-1, 10, 40, -1)),
last_eff_pev_timestep = individual::DoubleVariable$new(c(-1, 10, 40, -1)),
pev_profile = individual::IntegerVariable$new(c(-1, 1, 2, -1)),
ib = individual::DoubleVariable$new(c(.2, .3, .5, .9))
)
Expand Down Expand Up @@ -366,7 +366,7 @@ test_that('prophylaxis is considered for medicated humans', {
),
drug = individual::DoubleVariable$new(c(0, 2, 1, 0)),
drug_time = individual::DoubleVariable$new(c(-1, 49, 40, -1)),
pev_timestep = individual::DoubleVariable$new(c(-1, -1, -1, -1)),
last_eff_pev_timestep = individual::DoubleVariable$new(c(-1, -1, -1, -1)),
pev_profile = individual::IntegerVariable$new(c(-1, -1, -1, -1)),
ib = individual::DoubleVariable$new(c(.2, .3, .5, .9))
)
Expand Down
33 changes: 16 additions & 17 deletions tests/testthat/test-pev-epi.R
Original file line number Diff line number Diff line change
Expand Up @@ -86,49 +86,48 @@ test_that('pev epi targets correct age and respects min_wait', {
variables$birth <- individual::IntegerVariable$new(
-c(18, 18, 2.9, 18, 18) * 365 + timestep
)
variables$pev_timestep <- mock_integer(
variables$last_pev_timestep <- mock_integer(
c(50, -1, -1, 4*365, -1)
)
variables$pev_profile <- mock_integer(
c(1, -1, -1, 1, -1)
)

events$pev_epi_doses <- lapply(events$pev_epi_doses, mock_event)

correlations <- get_correlation_parameters(parameters)
process <- create_epi_pev_process(
variables,
events,
parameters,
get_correlation_parameters(parameters),
correlations,
parameters$pev_epi_coverages,
parameters$pev_epi_timesteps
)

sample_mock <- mockery::mock(c(TRUE, TRUE, FALSE))
mockery::stub(
process,
'sample_intervention',
mockery::mock(c(TRUE, TRUE, FALSE))
sample_mock
)

process(timestep)

mockery::expect_args(
events$pev_epi_doses[[1]]$schedule,
sample_mock,
1,
c(1, 2),
parameters$pev_doses[[1]]
c(1, 2, 5),
'pev',
.8,
correlations
)

mockery::expect_args(
events$pev_epi_doses[[2]]$schedule,
variables$last_pev_timestep$queue_update_mock(),
1,
c(1, 2),
parameters$pev_doses[[2]]
timestep,
c(1, 2)
)

mockery::expect_args(
events$pev_epi_doses[[3]]$schedule,
1,
c(1, 2),
parameters$pev_doses[[3]]
)
})

test_that('EPI ignores individuals scheduled for mass vaccination', {
Expand Down
94 changes: 87 additions & 7 deletions tests/testthat/test-pev.R
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,7 @@ test_that('Infection considers pev efficacy', {
variables$birth <- individual::IntegerVariable$new(
-c(8, 2.9, 3.2, 18.4) * 365 - 100
)
variables$pev_timestep <- individual::IntegerVariable$new(
variables$last_eff_pev_timestep <- individual::IntegerVariable$new(
c(-1, -1, 50, 50 + 30)
)
variables$pev_profile <- individual::IntegerVariable$new(
Expand Down Expand Up @@ -299,7 +299,10 @@ test_that('Mass boosters update profile params and reschedule correctly', {
variables$birth <- individual::IntegerVariable$new(
-c(2.9, 3.2, 18.4) * 365 + 100
)
variables$pev_timestep <- mock_double(
variables$last_pev_timestep <- mock_double(
c(50, 50, 50)
)
variables$last_eff_pev_timestep <- mock_double(
c(50, 50, 50)
)
variables$pev_profile <- mock_integer(
Expand All @@ -326,7 +329,13 @@ test_that('Mass boosters update profile params and reschedule correctly', {
listener(timestep, individual::Bitset$new(3)$insert(c(1, 2, 3)))

expect_bitset_update(
variables$pev_timestep$queue_update_mock(),
variables$last_pev_timestep$queue_update_mock(),
timestep,
c(1, 2, 3)
)

expect_bitset_update(
variables$last_eff_pev_timestep$queue_update_mock(),
timestep,
c(1, 2, 3)
)
Expand Down Expand Up @@ -368,7 +377,10 @@ test_that('Mass booster coverages sample subpopulations correctly', {
variables$birth <- individual::IntegerVariable$new(
-c(2.9, 3.2, 18.4) * 365 + 100
)
variables$pev_timestep <- mock_double(
variables$last_pev_timestep <- mock_double(
c(50, 50, 50)
)
variables$last_eff_pev_timestep <- mock_double(
c(50, 50, 50)
)
variables$pev_profile <- mock_integer(
Expand All @@ -395,7 +407,13 @@ test_that('Mass booster coverages sample subpopulations correctly', {
mockery::expect_args(sample_mock, 1, target, .9)

expect_bitset_update(
variables$pev_timestep$queue_update_mock(),
variables$last_pev_timestep$queue_update_mock(),
timestep,
c(2, 3)
)

expect_bitset_update(
variables$last_eff_pev_timestep$queue_update_mock(),
timestep,
c(2, 3)
)
Expand All @@ -413,6 +431,68 @@ test_that('Mass booster coverages sample subpopulations correctly', {
)
})

test_that('mass pev targets correct age and respects min_wait', {
timestep <- 5*365
parameters <- get_parameters(list(human_population = 5))
parameters <- set_mass_pev(
parameters,
profile = rtss_profile,
timesteps = c(4, 5) * 365,
coverages = c(0.8, 0.8),
min_ages = 0,
max_ages = 19 * 365,
min_wait = 2*365,
booster_timestep = c(1, 6) * 30,
booster_coverage = c(.9, .8),
booster_profile = list(rtss_booster_profile, rtss_booster_profile)
)
events <- create_events(parameters)
variables <- create_variables(parameters)
variables$birth <- individual::IntegerVariable$new(
-c(18, 18, 30, 18, 18) * 365 + timestep
)
variables$last_pev_timestep <- mock_integer(
c(50, -1, -1, 4*365, -1)
)

variables$pev_profile <- mock_integer(
c(1, -1, -1, 1, -1)
)

correlations <- get_correlation_parameters(parameters)
listener <- create_mass_pev_listener(
variables,
events,
parameters,
get_correlation_parameters(parameters)
)

sample_mock <- mockery::mock(c(TRUE, TRUE, FALSE))
mockery::stub(
listener,
'sample_intervention',
sample_mock
)

listener(timestep)

mockery::expect_args(
sample_mock,
1,
c(1, 2, 5),
'pev',
.8,
correlations
)

mockery::expect_args(
variables$last_pev_timestep$queue_update_mock(),
1,
timestep,
c(1, 2)
)
})

test_that('Mass efficacy listener works correctly', {
timestep <- 50
parameters <- get_parameters()
Expand All @@ -430,15 +510,15 @@ test_that('Mass efficacy listener works correctly', {
)

variables <- create_variables(parameters)
variables$pev_timestep <- mock_integer(c(-1, -1, -1))
variables$last_eff_pev_timestep <- mock_integer(c(-1, -1, -1))
variables$pev_profile <- mock_integer(c(-1, -1, -1))
listener <- create_pev_efficacy_listener(variables, 1)

listener(timestep, individual::Bitset$new(3)$insert(c(1, 2, 3)))

# vaccinated time
expect_bitset_update(
variables$pev_timestep$queue_update_mock(),
variables$last_eff_pev_timestep$queue_update_mock(),
timestep,
c(1, 2, 3)
)
Expand Down

0 comments on commit e7b5c4d

Please sign in to comment.