Authors: Rafsanjani Muhammod, Sajid Ahmed, Dewan Md Farid, Swakkhar Shatabda, Alok Sharma, and Abdollah Dehzangi
We can directly download by clicking the link.
Note: The package will download in zip format (.zip)
named PyFeat-master.zip
.
or,
Cloning a repository syncs it to our local machine (Example for Linux-based OS). After clone, we can add and edit files and then push and pull updates.
- Clone over HTTPS:
user@machine:~$ git clone https://github.com/mrzResearchArena/PyFeat.git
- Clone over SSH:
user@machine:~$ git clone git@github.com:mrzResearchArena/PyFeat.git
Note #1: If the clone was successful, a new sub-directory appears on our local drive. This directory has the same name (PyFeat) as the GitHub
repository that we cloned.
Note #2: We can run any Linux-based command from any valid location or path, but by default, a command generally runs from /home/user/
.
Note #2.1: user
is the name of our computer but your computer name can be different (Example: /home/bioinformatics/
).
Major (Generate Features):
- Install: python (version >= 3.5)
- Install: numpy (version >= 1.13.0)
Minor (Performance Measures):
- Install: sklearn (version >= 0.19.0)
- Install: pandas (version >= 0.21.0)
- Install: matplotlib (version >= 2.1.0)
Using PIP:
pip install <package name>
user@machine:~$ pip install scikit-learn
or,
Using anaconda environment:
conda install <package name>
user@machine:~$ conda install scikit-learn
Run command on your console or terminal.
user@machine:~$ python main.py --sequenceType=DNA --fullDataset=1 --optimumDataset=1 --fasta=/home/user/PyFeat/Datasets/DNA/FASTA.txt --label=/home/user/PyFeat/Datasets/DNA/Labels.txt --kTuple=3 --kGap=5 --pseudoKNC=1 --zCurve=1 --gcContent=1 --cumulativeSkew=1 --atgcRatio=1 --monoMono=1 --monoDi=1 --monoTri=1 --diMono=1 --diDi=1 --diTri=1 --triMono=1 --triDi=1
or,
user@machine:~$ python main.py -seq=DNA -full=1 -optimum=1 -fa=/home/user/PyFeat/Datasets/DNA/FASTA.txt -la=/home/user/PyFeat/Datasets/DNA/Label.txt -ktuple=3 -kgap=5 -pseudo=1 -zcurve=1 -gc=1 -skew=1 -atgc=1 -f11=1 -f12=1 -f13=1 -f21=1 -f22=1 -f23=1 -f31=1 -f32=1
user@machine:~$ python main.py --sequenceType=Protein --testDataset=1 --fasta=/home/user/PyFeat/Datasets/Protein/independentFASTA.txt --label=/home/user/PyFeat/Datasets/Protein/independentLabel.txt --kTuple=3 --kGap=5 --pseudoKNC=1 --zCurve=1 --gcContent=1 --cumulativeSkew=1 --atgcRatio=1 --monoMono=1 --monoDi=1 --monoTri=1 --diMono=1 --diDi=1 --diTri=1 --triMono=1 --triDi=1
or,
user@machine:~$ python main.py -seq=Protein -test=1 -fa=/home/user/PyFeat/Datasets/Protein/independentFASTA.txt -la=/home/user/PyFeat/Datasets/Protein/independentLabel.txt -ktuple=3 -kgap=5 -pseudo=1 -zcurve=1 -gc=1 -skew=1 -atgc=1 -f11=1 -f12=1 -f13=1 -f21=1 -f22=1 -f23=1 -f31=1 -f32=1
[ Comment: The = sign
is optional. ]
Note #1: It will generate a full dataset named fullDataset.csv (if -full=1 or,
--fullDataset==1)
Note #2: It will generate a selected features dataset named optimumDataset.csv (if -optimum=1 or,
--optimumDataset==1), and It will also track the selected features index.
Note #3: It will generate a full dataset named testDataset.csv (if -test=1 or,
--testDataset==1) [ Especially for the independent (testing) dataset purpose. ] [ 3.1.2. ]
Note #4: The process will run smoothly for valid FASTA sequences and row-wise class label.
Argument | Corresponding Optional Argument | Type | Default | Help |
---|---|---|---|---|
--sequenceType | -seq | string | --sequenceType=DNA | We can use DNA, RNA, and protein or prot as option; Case is not sensitive. |
--fasta | -fa | string | Enter a UNIX-like path; Example: /home/user/FASTA.txt | |
--label | -la | string | Enter a UNIX-like path; Example: /home/user/Label.txt | |
--kGap | -kgap | integer | --kGap=5 | The number of gaps ranging from 1 to 5 inclusive; Example: -kGap=5 |
--kTuple | -ktuple | integer | --kTuple=3 | The number of nucleotides ranging from 1 to 3 inclusive; Example: -kTuple=3 |
--fullDataset | -full | integer | --fullDataset=0 | Set --fullDataset=1, if we don't want to save full dataset. |
--testDataset | -test | integer | --testDataset=0 | Set --testDataset=1, if we don't want to save test dataset. |
--optimumDataset | -optimum | integer | --optimumDataset=0 | Set --optimumDataset=1, if we don't want to save optimum dataset. |
--pseudoKNC | -pseudo | integer | --pseudoKNC=0 | Set --pseudoKNC=1, if we want to generate features. |
--zCurve | -zcurve | integer | --zCurve=0 | Set --zCurve=1, if we want to generate features. |
--gcContent | -gc | integer | --gcContent=0 | Set --gcContent=1, if we want to generate features. |
--cumulativeSkew | -skew | integer | --cumulativeSkew=0 | Set --cumulativeSkew=1, if we want to generate features. |
--atgcRatio | -atgc | integer | --atgcRatio=0 | Set --atgcRatio=1, if we want to generate features. |
--monoMono | -f11 | integer | --monoMono=0 | Set --monoMono=1, if we want to generate features. |
--monoDi | -f12 | integer | --monoDi=0 | Set --monoDi=1, if we want to generate features. |
--monoTri | -f13 | integer | --monoTri=0 | Set --monoTri=1, if we want to generate features. |
--diMono | -f21 | integer | --diMono=0 | Set --diMono=1, if we want to generate features. |
--diDi | -f22 | integer | --diDi=0 | Set --diDi=1, if we want to generate features. |
--diTri | -f23 | integer | --diTri=0 | Set --diTri=1, if we want to generate features. |
--triMono | -f31 | integer | --triMono=0 | Set --triMono=1, if we want to generate features. |
--triDi | -f32 | integer | --triDi=0 | Set --triDi=1, if we want to generate features. |
Feature Name | Feature Structure / Formula | Number of Features | Applicable |
---|---|---|---|
zCurve | x_axis = (A+G)-(C+T); y_axis = (A+C)-(G+T); z_axis = (A+T)-(G+C) | 3 features for DNA/RNA | DNA, RNA |
gcContent | ( (G+C)/(A+C+G+T) ) x 100 % | 1 features for DNA/RNA | DNA, RNA |
atgcRatio | (A+T)/(G+C) | 1 features for DNA/RNA | DNA, RNA |
cumulativeSkew | gcSkew=(G-C)/(G+C); atSkew=(A-T)/(A+T) | 2 features for DNA/RNA | DNA, RNA |
pseudoKNC | X, XX, XXX | when --kTuple=3, 84 features for DNA/RNA and 8,420 features for protein | DNA, RNA, Protein |
monoMonoKGap | X_X | when --kGap=1, 16 features for DNA/RNA and 400 features for protein | DNA, RNA, Protein |
monoDiKGap | X_XX | when --kGap=1, 64 features for DNA/RNA and 8,000 features for protein | DNA, RNA, Protein |
monoTriKGap | X_XXX | when --kGap=1, 256 features for DNA/RNA and 160,000 features for protein | DNA, RNA, Protein |
diMonoKGap | XX_X | when --kGap=1, 64 features for DNA/RNA and 8,000 features for protein | DNA, RNA, Protein |
diDiKGap | XX_XX | when --kGap=1, 256 features for DNA/RNA and 160,000 features for protein | DNA, RNA, Protein |
diTriKGap | XX_XXX | when --kGap=1, 1024 features for DNA/RNA and 3,200,000 features for protein | DNA, RNA, Protein |
triMonoKGap | XXX_X | when --kGap=1, 256 features for DNA/RNA and 160,000 features for protein | DNA, RNA, Protein |
triDiKGap | XXX_XX | when --kGap=1, 1024 features for DNA/RNA and 3,200,000 features for protein | DNA, RNA, Protein |
Note: When sequence becomes DNA, RNA, and Protein then X = {A,C,G,T}, X = {A,C,G,U}, and X = {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y} respectively.
Arguments Details for the Features Generation
and Feature Description
are provided in Tables 1 and Table 2, respectively.
user@machine:~$ python runClassifiers.py --nFCV=10 --dataset=optimumDataset.csv --auROC=1 --boxPlot=1
Note #1: It will provide classification results (evaluationResults.txt) from the user provides binary class dataset (.csv format).
Note #2: Generate a ROC Curve (auROC.png).
Note #3: Generate an accuracy comparison via boxPlot (AccuracyBoxPlot.png).
Argument | Corresponding Optional Argument | Type | Default | Help |
---|---|---|---|---|
--nFCV | -cv | integer | --nFCV=10 | How many numbers of cross-validation? |
--dataset | -data | string | --dataset=optimumDataset.csv | Enter a UNIX-like path for a .csv file; Example: /home/User/dataset.csv |
--auROC | -roc | integer | --auROC=1 | Set --auROC=0, if we didn't want to generate the ROC Curve. |
--boxPlot | -box | integer | --boxPlot=1 | Set --boxPlot=0, if we didn't want to generate the accuracy box-plot. |
user@machine:~$ python trainModel.py --dataset=optimumDataset.csv --model=LR
Note #1: It will provide a dumpModel.pkl from the user provides binary class dataset (.csv format).
Argument | Corresponding Optional Argument | Type | Default | Help |
---|---|---|---|---|
--dataset | -data | string | --dataset=optimumDataset.csv | Enter a UNIX-like path for a .csv file; Example: /home/User/dataset.csv |
--model | -m | string | --model=LR | We can use LR, SVM, KNN, DT, SVM, NB, Bagging, RF, AB, GB, and LDA as an option; All options are case sensitive. |
--K | -k | integer | --K=5 | Only for the KNN classifier; Number of neighbor |
Note: LR, SVM, KNN, DT, NB, Bagging, RF, AB, GB, and LDA represents Logistics Regression, Support Vector Machine, k-Nearest Neighbor, Decision Tree, Naive Bayes, Bagging, Random Forest, AdaBoost, Gradient Boosting, Linear Discriminant Analysis classifier respectively.
user@machine:~$ python evaluateModel.py --optimumDatasetPath=optimumDataset.csv --testDatasetPath=testDataset.csv
Note #1: Here, optimumDataset.csv, and testDataset.csv using as a traing dataset and test dataset respectively.
Argument | Corresponding Optional Argument | Type | Default | Help |
---|---|---|---|---|
--optimumDatasetPath | -optimumPath | string | --optimumDatasetPath=optimumDataset.csv | Enter a UNIX-like path for a .csv file; Example: /home/User/dataset.csv |
--testDatasetPath | -testPath | string | --testDatasetPath=testDataset.csv | Enter a UNIX-like path for a .csv file; Example: /home/User/dataset.csv |
[1] Bin Liu, Fule Liu, Longyun Fang, Xiaolong Wang, and Kuo-Chen Chou. repdna: a python package to generate various modes of feature vectors for dna sequences by in- corporating user-defined physicochemical properties and sequence-order effects. Bioin- formatics, 31(8):1307–1309, 2014.
[2] Dong-Sheng Cao, Qing-Song Xu, and Yi-Zeng Liang. propy: a tool to generate various modes of chous pseaac. Bioinformatics, 29(7):960–962, 2013.
[3] Zhen Chen, Pei Zhao, Fuyi Li, André Leier, Tatiana T Marquez-Lago, Yanan Wang, Geoffrey I Webb, A Ian Smith, Roger J Daly, Kuo-Chen Chou, et al. ifeature: a python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics, 1:4, 2018.
[4] Md Rafsan Jani, Md Toha Khan Mozlish, Sajid Ahmed, Dewan Md Farid, and Swakkhar Shatabda. irecspot-ef: Effective sequence based features for recombination hotspot prediction. Computers in biology and medicine, 2018.
[5] Bin Liu, Fule Liu, Longyun Fang, Xiaolong Wang, and Kuo-Chen Chou. reprna: a web server for generating various feature vectors of rna sequences. Molecular Genetics and Genomics, 291(1):473–481, 2016.
[6] Nan Xiao, Dong-Sheng Cao, Min-Feng Zhu, and Qing-Song Xu. protr/protrweb: R package and web server for generating various numerical representation schemes of pro- tein sequences. Bioinformatics, 31(11):1857–1859, 2015.
[7] Bin Liu. Bioseq-analysis: a platform for dna, rna and protein sequence analysis based on machine learning approaches. Briefings in bioinformatics, 2017.
[8] Bin Liu, Hao Wu, Deyuan Zhang, Xiaolong Wang, and Kuo-Chen Chou. Pse-analysis: a python package for dna/rna and protein/peptide sequence analysis based on pseudo components and kernel methods. Oncotarget, 8(8):13338, 2017.
[9] Bin Liu, Fule Liu, Xiaolong Wang, Junjie Chen, Longyun Fang, and Kuo-Chen Chou. Pse-in-one: a web server for generating various modes of pseudo components of dna, rna, and protein sequences. Nucleic acids research, 43(W1):W65–W71, 2015.
[10] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. Journal of machine learning research, 12(Oct):2825–2830, 2011.
[11] Eamonn Keogh and Abdullah Mueen. Curse of dimensionality. In Encyclopedia of Machine Learning and Data Mining, pages 314–315. Springer, 2017.
[12] Ruihu Wang. Adaboost for feature selection, classification and its relation with svm, a review. Physics Procedia, 25:800–807, 2012.
[13] Hao Lin, En-Ze Deng, Hui Ding, Wei Chen, and Kuo-Chen Chou. ipro54-pseknc: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic acids research, 42(21):12961–12972, 2014.
[14] Wei Chen, Pengmian Feng, Hui Ding, and Hao Lin. Pai: Predicting adenosine to inosine editing sites by using pseudo nucleotide compositions. Scientific reports, 6:35123, 2016.
[15] Hao Lin, Zhi-Yong Liang, Hua Tang, and Wei Chen. Identifying sigma70 promoters with novel pseudo nucleotide composition. IEEE/ACM transactions on computational biology and bioinformatics, 2017.
[16] Mahmoud Ghandi, Dongwon Lee, Morteza Mohammad-Noori, and Michael A Beer. Enhanced regulatory sequence prediction using gapped k-mer features. PLoS computa- tional biology, 10(7):e1003711, 2014.
[17] Shahana Yasmin Chowdhury, Swakkhar Shatabda, and Abdollah Dehzangi. Idnaprot- es: Identification of dna-binding proteins using evolutionary and structural features. Scientific Reports, 7(1):14938, 2017.