Skip to content

Commit

Permalink
Modernized LlamaIndex integration (#1613)
Browse files Browse the repository at this point in the history
Updated LlamaIndex example
  • Loading branch information
jamesbraza authored Jan 20, 2024
1 parent b7127c2 commit f3d71f8
Show file tree
Hide file tree
Showing 2 changed files with 24 additions and 36 deletions.
27 changes: 12 additions & 15 deletions examples/llamaindex/README.md
Original file line number Diff line number Diff line change
@@ -1,30 +1,27 @@
# LocalAI Demonstration with Embeddings

This demonstration shows you how to use embeddings with existing data in LocalAI. We are using the `llama_index` library to facilitate the embedding and querying processes. The `Weaviate` client is used as the embedding source.

## Prerequisites

Before proceeding, make sure you have the following installed:
- Weaviate client
- LocalAI and its dependencies
- llama_index and its dependencies
This demonstration shows you how to use embeddings with existing data in LocalAI.
We are using the `llama-index` library to facilitate the embedding and querying processes.
The `Weaviate` client is used as the embedding source.

## Getting Started

1. Clone this repository:

2. Navigate to the project directory:
1. Clone this repository and navigate to this directory

3. Run the example:
```bash
git clone git@github.com:mudler/LocalAI.git
cd LocalAI/examples/llamaindex
```

`python main.py`
2. pip install LlamaIndex and Weviate's client: `pip install llama-index>=0.9.9 weviate-client`
3. Run the example: `python main.py`
```
```none
Downloading (…)lve/main/config.json: 100%|███████████████████████████| 684/684 [00:00<00:00, 6.01MB/s]
Downloading model.safetensors: 100%|███████████████████████████████| 133M/133M [00:03<00:00, 39.5MB/s]
Downloading (…)okenizer_config.json: 100%|███████████████████████████| 366/366 [00:00<00:00, 2.79MB/s]
Downloading (…)solve/main/vocab.txt: 100%|█████████████████████████| 232k/232k [00:00<00:00, 6.00MB/s]
Downloading (…)/main/tokenizer.json: 100%|█████████████████████████| 711k/711k [00:00<00:00, 18.8MB/s]
Downloading (…)cial_tokens_map.json: 100%|███████████████████████████| 125/125 [00:00<00:00, 1.18MB/s]
LocalAI is a community-driven project that aims to make AI accessible to everyone. It was created by Ettore Di Giacinto and is focused on providing various AI-related features such as text generation with GPTs, text to audio, audio to text, image generation, and more. The project is constantly growing and evolving, with a roadmap for future improvements. Anyone is welcome to contribute, provide feedback, and submit pull requests to help make LocalAI better.
```
```
33 changes: 12 additions & 21 deletions examples/llamaindex/main.py
Original file line number Diff line number Diff line change
@@ -1,38 +1,29 @@
import os

import weaviate

from llama_index import ServiceContext, VectorStoreIndex, StorageContext
from llama_index.llms import LocalAI
from llama_index import ServiceContext, VectorStoreIndex
from llama_index.llms import LOCALAI_DEFAULTS, OpenAILike
from llama_index.vector_stores import WeaviateVectorStore
from llama_index.storage.storage_context import StorageContext

# Weaviate client setup
client = weaviate.Client("http://weviate.default")

# Weaviate vector store setup
vector_store = WeaviateVectorStore(weaviate_client=client, index_name="AIChroma")

# Storage context setup
storage_context = StorageContext.from_defaults(vector_store=vector_store)
vector_store = WeaviateVectorStore(
weaviate_client=weaviate.Client("http://weviate.default"), index_name="AIChroma"
)

# LocalAI setup
llm = LocalAI(temperature=0, model_name="gpt-3.5-turbo", api_base="http://local-ai.default", api_key="stub")
llm.globally_use_chat_completions = True;
# LLM setup, served via LocalAI
llm = OpenAILike(temperature=0, model="gpt-3.5-turbo", **LOCALAI_DEFAULTS)

# Service context setup
service_context = ServiceContext.from_defaults(llm=llm, embed_model="local")

# Load index from stored vectors
index = VectorStoreIndex.from_vector_store(
vector_store,
storage_context=storage_context,
service_context=service_context
vector_store, service_context=service_context
)

# Query engine setup
query_engine = index.as_query_engine(similarity_top_k=1, vector_store_query_mode="hybrid")
query_engine = index.as_query_engine(
similarity_top_k=1, vector_store_query_mode="hybrid"
)

# Query example
response = query_engine.query("What is LocalAI?")
print(response)
print(response)

0 comments on commit f3d71f8

Please sign in to comment.