- Gym 0.9.3
- Tensorflow
- Keras
- Keras-rl
sudo apt-get install -y python3-numpy python3-dev python3-pip cmake zlib1g-dev libjpeg-dev xvfb libav-tools xorg-dev python-opengl libboost-all-dev libsdl2-dev swig
cd ~
git clone https://github.com/openai/gym.git
cd gym
sudo pip3 install -e '.[all]'
Taxi-v2
: Example .- Random Steps .
- Simple Learning Formula :
- More complex environement
Lunarlander-v2
- Using keras-rl for it's simplicity .
DL model :
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
flatten_1 (Flatten) (None, 8) 0
_________________________________________________________________
dense_1 (Dense) (None, 16) 144
_________________________________________________________________
activation_1 (Activation) (None, 16) 0
_________________________________________________________________
dense_2 (Dense) (None, 16) 272
_________________________________________________________________
activation_2 (Activation) (None, 16) 0
_________________________________________________________________
dense_3 (Dense) (None, 16) 272
_________________________________________________________________
activation_3 (Activation) (None, 16) 0
_________________________________________________________________
dense_4 (Dense) (None, 4) 68
_________________________________________________________________
activation_4 (Activation) (None, 4) 0
=================================================================
Total params: 756
Trainable params: 756
Non-trainable params: 0
_________________________________________________________________
- https://www.oreilly.com/learning/introduction-to-reinforcement-learning-and-openai-gym
- https://en.wikipedia.org/wiki/Q-learning
- https://hackernoon.com/the-3-tricks-that-made-alphago-zero-work-f3d47b6686ef
- https://github.com/deepmind/sonnet
- https://github.com/deepmind/lab
- https://becominghuman.ai/lets-build-an-atari-ai-part-1-dqn-df57e8ff3b26
- https://ai.intel.com/demystifying-deep-reinforcement-learning/
- http://awjuliani.github.io/exploration/index.html
- https://www.chess.com/news/view/google-s-alphazero-destroys-stockfish-in-100-game-match
- https://github.com/wagonhelm/Reinforcement-Learning-Introduction/blob/master/Reinforcement%20Learning%20Introduction.ipynb
- https://raw.githubusercontent.com/ageron/tiny-dqn/master/tiny_dqn.py
- https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-7-action-selection-strategies-for-exploration-d3a97b7cceaf