🏀 A full-stack AI application for fantasy basketball enthusiasts. 🏀
→ Historical Data Insights: Analyze historical data over the last nine seasons to predict future team performances.
→ Current Form: Calculate rolling averages of key statistics over recent games to determine current form and identify trends.
→ Historical Matchup Performance: Analyze historical matchups between teams to predict outcomes and evaluate matchup strengths and weaknesses.
→ Performance Trends Against Specific Opponents: Highlight performance trends against specific types of opponents (e.g., teams with strong defense or high-scoring offenses).
→ User Criteria-Based Recommendations: Allow users to prioritize specific statistics and receive tailored recommendations.
This project is designed for continuous enhancement and improvement. Therefore, a chart has been added to track the development and completion progress of each project element, highlighting the future updates I plan to implement for improvement.
Component | Progress |
---|---|
App Interface (Full-Stack) | ✅ Completed UI/UX Design Implementation ✅ Client successfully displays and interacts with server mock data ✅ Seamlessly implements dynamic internal page changes |
Machine Learning Prediction Model | ✅ Initial model complete with 63% accuracy |
Integration of ML Results and Pandas Manipulation Data with Server |
📅 Current Task 📅 |
---|
Develop a JSON file that generates up-to-date performance and matchup analysis based on the mock data format. |
ML-Model |
|
---|---|
Client |
|
nba-fantasy-assistant/
├── ML-model/
│ ├── README.md
│ ├── Create_NBADataset.ipynb # Code for creating CSVs (Jupyter Notebook)
│ ├── Retrieve_NBAData.ipynb # Web Scraping Code (Jupyter Notebook)
│ ├── NBA_PredictionModel1.ipynb # Base ML Model
│ ├── nba_data/
│ │ ├── .ipynb_checkpoints/
│ │ ├── scores/ # All individual box scores across seasons
│ │ ├── standings/ # All standings (by month) across seasons
│ │ ├── ... # Other miscellaneous csv files
├── client/
│ ├── public/
│ ├── src/
│ │ ├── components/
│ │ │ ├── Form.css
│ │ │ ├── Header.css
│ │ │ ├── Modal.css
│ │ │ ├── Modal.js
│ │ │ ├── NavButton.css
│ │ │ ├── NavButton.js
│ │ ├── images/ # All images used for app
│ │ ├── pages/
│ │ │ ├── Home.js # Main (Home) Page
│ │ │ ├── Home.css
│ │ │ ├── TeamPerformanceAnalysis.js
│ │ │ ├── MatchupAnalyzer.js
│ │ │ ├── FantasyRecommendations.js
│ │ ├── App.js
│ │ ├── index.js
│ │ ├── index.css
│ ├── package.json
│ ├── README.md # React App Explanation
├── server/
│ ├── index.js
│ ├── package.json
├── README.md # Main Project File README
├── LICENSE
Other tools for ML Model:
NumPy
Pandas
Scikit-learn
BeautifulSoup
Main Directory Command: cd NBA-Fantasy-Assistant
- Navigate to the
client
directory:
cd client
- Install dependencies:
npm install
- Start the React App:
npm start
- Navigate to the
server
directory:
cd server
- Install dependencies:
npm install
- Start the server:
node index.js
Open your browser and go to http://localhost:3000
to view the application.