Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rename threshold_keys #147

Merged
merged 3 commits into from
Jul 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 18 additions & 18 deletions examples/01_Simulation.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -237,7 +237,7 @@
"source": [
"By default, `simulate_to_threshold` simulates until the first event occurs. In this case, that's `falling` (i.e., when the object begins falling). For this model `falling` will always occur before `impact`, but for many models you won't have such a strict ordering of events. \n",
"\n",
"For users interested in when a specific event is reached, you can indicate which event(s) you'd like to simulate to using the `threshold_keys` argument. For example,"
"For users interested in when a specific event is reached, you can indicate which event(s) you'd like to simulate to using the `events` argument. For example,"
]
},
{
Expand All @@ -246,7 +246,7 @@
"metadata": {},
"outputs": [],
"source": [
"results = m.simulate_to_threshold(save_freq=0.5, threshold_keys='impact')\n",
"results = m.simulate_to_threshold(save_freq=0.5, events='impact')\n",
"fig = results.outputs.plot(ylabel='Position (m)')\n",
"fig = results.event_states.plot()"
]
Expand All @@ -255,7 +255,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Now the model simulated past the `falling` event untill the `impact` event occured. `threshold_keys` accepts a single event, or a list of events, so for models with many events you can specify a list of events where any will stop simulation."
"Now the model simulated past the `falling` event until the `impact` event occurred. `events` accepts a single event, or a list of events, so for models with many events you can specify a list of events where any will stop simulation."
]
},
{
Expand All @@ -273,7 +273,7 @@
"metadata": {},
"outputs": [],
"source": [
"results = m.simulate_to_threshold(save_freq=0.5, threshold_keys='impact', horizon=7)\n",
"results = m.simulate_to_threshold(save_freq=0.5, events='impact', horizon=7)\n",
"fig = results.outputs.plot(ylabel='Position (m)')\n",
"fig = results.event_states.plot()"
]
Expand All @@ -291,7 +291,7 @@
"metadata": {},
"outputs": [],
"source": [
"results = m.simulate_to_threshold(save_freq=0.5, threshold_keys='impact', horizon=10)\n",
"results = m.simulate_to_threshold(save_freq=0.5, events='impact', horizon=10)\n",
"fig = results.outputs.plot(ylabel='Position (m)')\n",
"fig = results.event_states.plot()"
]
Expand All @@ -318,7 +318,7 @@
"metadata": {},
"outputs": [],
"source": [
"results = m.simulate_to_threshold(save_freq=0.5, threshold_keys='impact', print=True, progress=True)"
"results = m.simulate_to_threshold(save_freq=0.5, events='impact', print=True, progress=True)"
]
},
{
Expand Down Expand Up @@ -970,7 +970,7 @@
"outputs": [],
"source": [
"results = m.simulate_to_threshold(\n",
" threshold_keys='impact',\n",
" events='impact',\n",
" dt=2.5,\n",
" save_freq=2.5)\n",
"fig = results.outputs.plot(ylabel='Position (m)')"
Expand All @@ -992,7 +992,7 @@
"outputs": [],
"source": [
"results = m.simulate_to_threshold(\n",
" threshold_keys='impact',\n",
" events='impact',\n",
" dt=0.25,\n",
" save_freq=0.25)\n",
"fig = results.outputs.plot(ylabel='Position (m)')"
Expand All @@ -1016,7 +1016,7 @@
"outputs": [],
"source": [
"results = m.simulate_to_threshold(\n",
" threshold_keys='impact',\n",
" events='impact',\n",
" dt=0.05,\n",
" save_freq=0.05)\n",
"fig = results.outputs.plot(ylabel='Position (m)')"
Expand Down Expand Up @@ -1052,7 +1052,7 @@
"outputs": [],
"source": [
"results = m.simulate_to_threshold(\n",
" threshold_keys='impact',\n",
" events='impact',\n",
" dt=1,\n",
" save_freq=1.5)\n",
"print('Times saved: ', results.times)"
Expand All @@ -1074,7 +1074,7 @@
"outputs": [],
"source": [
"results = m.simulate_to_threshold(\n",
" threshold_keys='impact',\n",
" events='impact',\n",
" dt=('auto', 1),\n",
" save_freq=1.5)\n",
"print('Times saved: ', results.times)"
Expand Down Expand Up @@ -1118,7 +1118,7 @@
" return 0.25\n",
" return 1\n",
"\n",
"results=m.simulate_to_threshold(dt=next_time, save_freq= 0.25, threshold_keys='impact')\n",
"results=m.simulate_to_threshold(dt=next_time, save_freq= 0.25, events='impact')\n",
"\n",
"print(results.times)"
]
Expand Down Expand Up @@ -1197,15 +1197,15 @@
"metadata": {},
"outputs": [],
"source": [
"results1 = m.simulate_to_threshold(threshold_keys='impact', dt=0.1, save_freq=0.1)\n",
"results1 = m.simulate_to_threshold(events='impact', dt=0.1, save_freq=0.1)\n",
"fig = results1.outputs.plot(title='default')\n",
"\n",
"m['throwing_speed'] = 10\n",
"results2 = m.simulate_to_threshold(threshold_keys='impact', dt=0.1, save_freq=0.1)\n",
"results2 = m.simulate_to_threshold(events='impact', dt=0.1, save_freq=0.1)\n",
"fig = results2.outputs.plot(title='slow')\n",
"\n",
"m['throwing_speed'] = 80\n",
"results3 = m.simulate_to_threshold(threshold_keys='impact', dt=0.1, save_freq=0.1)\n",
"results3 = m.simulate_to_threshold(events='impact', dt=0.1, save_freq=0.1)\n",
"fig = results3.outputs.plot(title='fast')"
]
},
Expand All @@ -1223,11 +1223,11 @@
"outputs": [],
"source": [
"m_e = ThrownObject(g=-9.81) # Earth gravity\n",
"results_earth = m_e.simulate_to_threshold(threshold_keys='impact', dt=0.1, save_freq=0.1)\n",
"results_earth = m_e.simulate_to_threshold(events='impact', dt=0.1, save_freq=0.1)\n",
"fig = results_earth.outputs.plot(title='Earth')\n",
"\n",
"m_j = ThrownObject(g=-24.79) # Jupiter gravity\n",
"results_jupiter = m_j.simulate_to_threshold(threshold_keys='impact', dt=0.1, save_freq=0.1)\n",
"results_jupiter = m_j.simulate_to_threshold(events='impact', dt=0.1, save_freq=0.1)\n",
"fig = results_jupiter.outputs.plot(title='Jupiter')"
]
},
Expand Down Expand Up @@ -1293,7 +1293,7 @@
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
"hash": "1a1af0ee75eeea9e2e1ee996c87e7a2b11a0bebd85af04bb136d915cefc0abce"
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Should this be deleted?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Argh- Git doesn't handle jupyter notebooks very well.

This isn't a problem, so I'm going to ignore it.

}
}
},
Expand Down
18 changes: 9 additions & 9 deletions examples/04_New Models.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -256,7 +256,7 @@
"outputs": [],
"source": [
"m = ThrownObject()\n",
"save = m.simulate_to_threshold(print=True, save_freq=1, threshold_keys='impact', dt=0.1)"
"save = m.simulate_to_threshold(print=True, save_freq=1, events='impact', dt=0.1)"
]
},
{
Expand Down Expand Up @@ -547,7 +547,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"We'll start by simulating to impact. We'll specify the `threshold_keys` to specifically indicate we are interested in impact. For more information on simulation, see 1. Simulation. "
"We'll start by simulating to impact. We'll specify the `events` to specifically indicate we are interested in impact. For more information on simulation, see 1. Simulation. "
]
},
{
Expand All @@ -558,7 +558,7 @@
"source": [
"# Simulate to impact\n",
"event = 'impact'\n",
"simulated_results = m_st.simulate_to_threshold(threshold_keys=[event], dt=0.005, save_freq=1, print = True)\n",
"simulated_results = m_st.simulate_to_threshold(events=event, dt=0.005, save_freq=1, print = True)\n",
"\n",
"# Print result: \n",
"print('The object hit the ground in {} seconds'.format(round(simulated_results.times[-1],2)))"
Expand Down Expand Up @@ -938,7 +938,7 @@
"# Simulate to threshold \n",
"m_matrix.simulate_to_threshold(\n",
" print = True, \n",
" threshold_keys = 'impact', \n",
" events = 'impact', \n",
" dt = 0.1, \n",
" save_freq = 1)\n",
"toc_matrix = time.perf_counter()"
Expand All @@ -963,7 +963,7 @@
"tic_st = time.perf_counter()\n",
"m_st.simulate_to_threshold(\n",
" print = True, \n",
" threshold_keys = 'impact', \n",
" events = 'impact', \n",
" dt = 0.1, \n",
" save_freq = 1)\n",
"toc_st = time.perf_counter()\n",
Expand Down Expand Up @@ -1030,7 +1030,7 @@
"outputs": [],
"source": [
"event = 'impact'\n",
"simulated_results = m_limits.simulate_to_threshold(threshold_keys=[event], dt=0.005, save_freq=1)\n",
"simulated_results = m_limits.simulate_to_threshold(events=event, dt=0.005, save_freq=1)\n",
"\n",
"print('Example: No State Limits')\n",
"for i, state in enumerate(simulated_results.states):\n",
Expand Down Expand Up @@ -1086,7 +1086,7 @@
"outputs": [],
"source": [
"event = 'impact'\n",
"simulated_results = m_limits.simulate_to_threshold(threshold_keys=[event], dt=0.005, save_freq=1)\n",
"simulated_results = m_limits.simulate_to_threshold(events=event, dt=0.005, save_freq=1)\n",
"\n",
"print('Example: With State Limits')\n",
"for i, state in enumerate(simulated_results.states):\n",
Expand Down Expand Up @@ -1117,7 +1117,7 @@
"x0 = m_limits.initialize(u = {}, z = {})\n",
"x0['x'] = -1 # Initial position value set to an unrealistic value of -1\n",
"\n",
"simulated_results = m_limits.simulate_to_threshold(threshold_keys=[event], dt=0.005, save_freq=1, x = x0)\n",
"simulated_results = m_limits.simulate_to_threshold(events=event, dt=0.005, save_freq=1, x = x0)\n",
"\n",
"# Print states\n",
"print('Example 2: With -1 as initial x value')\n",
Expand Down Expand Up @@ -1373,7 +1373,7 @@
"metadata": {},
"outputs": [],
"source": [
"simulated_results = m.simulate_to_threshold(future_loading, threshold_keys=['EOD'], print = True)\n",
"simulated_results = m.simulate_to_threshold(future_loading, events='EOD', print = True)\n",
"\n",
"simulated_results.event_states.plot()\n",
"plt.show()"
Expand Down
14 changes: 7 additions & 7 deletions examples/full_lstm_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,11 +30,11 @@ def future_loading(t, x=None):
# Step 1: Generate additional data
# We will use data generated above, but we also want data at additional timesteps
print('Generating data...')
data = m.simulate_to_threshold(future_loading, threshold_keys='impact', save_freq=TIMESTEP, dt=TIMESTEP)
data_half = m.simulate_to_threshold(future_loading, threshold_keys='impact', save_freq=TIMESTEP/2, dt=TIMESTEP/2)
data_quarter = m.simulate_to_threshold(future_loading, threshold_keys='impact', save_freq=TIMESTEP/4, dt=TIMESTEP/4)
data_twice = m.simulate_to_threshold(future_loading, threshold_keys='impact', save_freq=TIMESTEP*2, dt=TIMESTEP*2)
data_four = m.simulate_to_threshold(future_loading, threshold_keys='impact', save_freq=TIMESTEP*4, dt=TIMESTEP*4)
data = m.simulate_to_threshold(future_loading, events='impact', save_freq=TIMESTEP, dt=TIMESTEP)
data_half = m.simulate_to_threshold(future_loading, events='impact', save_freq=TIMESTEP/2, dt=TIMESTEP/2)
data_quarter = m.simulate_to_threshold(future_loading, events='impact', save_freq=TIMESTEP/4, dt=TIMESTEP/4)
data_twice = m.simulate_to_threshold(future_loading, events='impact', save_freq=TIMESTEP*2, dt=TIMESTEP*2)
data_four = m.simulate_to_threshold(future_loading, events='impact', save_freq=TIMESTEP*4, dt=TIMESTEP*4)

# Step 2: Data Prep
# We need to add the timestep as a input
Expand Down Expand Up @@ -109,8 +109,8 @@ def future_loading3(t, x = None):
# Use new dt, not used in training
# Using a dt not used in training will demonstrate the model's
# ability to handle different timesteps not part of training set
data = m.simulate_to_threshold(future_loading, threshold_keys='impact', dt=TIMESTEP*3, save_freq=TIMESTEP*3)
results3 = m2.simulate_to_threshold(future_loading3, threshold_keys='impact', dt=TIMESTEP*3, save_freq=TIMESTEP*3)
data = m.simulate_to_threshold(future_loading, events='impact', dt=TIMESTEP*3, save_freq=TIMESTEP*3)
results3 = m2.simulate_to_threshold(future_loading3, events='impact', dt=TIMESTEP*3, save_freq=TIMESTEP*3)

# Step 6: Compare Results
print('Comparing results...')
Expand Down
10 changes: 5 additions & 5 deletions examples/lstm_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ def run_example():
def future_loading(t, x=None):
return m.InputContainer({}) # No input for thrown object

data = m.simulate_to_threshold(future_loading, threshold_keys='impact', save_freq=TIMESTEP, dt=TIMESTEP)
data = m.simulate_to_threshold(future_loading, events='impact', save_freq=TIMESTEP, dt=TIMESTEP)

# Step 2: Generate model
# We'll use the LSTMStateTransitionModel class to generate a model
Expand Down Expand Up @@ -91,10 +91,10 @@ def future_loading2(t, x=None):
# We will use data generated above, but we also want data at additional timesteps
print('\n------------------------------------------\nExample 2...')
print('Generating additional data...')
data_half = m.simulate_to_threshold(future_loading, threshold_keys='impact', save_freq=TIMESTEP/2, dt=TIMESTEP/2)
data_quarter = m.simulate_to_threshold(future_loading, threshold_keys='impact', save_freq=TIMESTEP/4, dt=TIMESTEP/4)
data_twice = m.simulate_to_threshold(future_loading, threshold_keys='impact', save_freq=TIMESTEP*2, dt=TIMESTEP*2)
data_four = m.simulate_to_threshold(future_loading, threshold_keys='impact', save_freq=TIMESTEP*4, dt=TIMESTEP*4)
data_half = m.simulate_to_threshold(future_loading, events='impact', save_freq=TIMESTEP/2, dt=TIMESTEP/2)
data_quarter = m.simulate_to_threshold(future_loading, events='impact', save_freq=TIMESTEP/4, dt=TIMESTEP/4)
data_twice = m.simulate_to_threshold(future_loading, events='impact', save_freq=TIMESTEP*2, dt=TIMESTEP*2)
data_four = m.simulate_to_threshold(future_loading, events='impact', save_freq=TIMESTEP*4, dt=TIMESTEP*4)

# Step 2: Data Prep
# We need to add the timestep as a input
Expand Down
10 changes: 5 additions & 5 deletions examples/new_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@ def future_load(t, x=None):

# Step 3: Simulate to impact
event = 'impact'
simulated_results = m.simulate_to_threshold(future_load, threshold_keys=[event], dt=0.005, save_freq=1, print = True)
simulated_results = m.simulate_to_threshold(future_load, events=event, dt=0.005, save_freq=1, print = True)

# Print flight time
print('The object hit the ground in {} seconds'.format(round(simulated_results.times[-1],2)))
Expand All @@ -86,24 +86,24 @@ def future_load(t, x=None):

# The first way to change the configuration is to pass in your desired config into construction of the model
m = ThrownObject(g = grav_moon)
simulated_moon_results = m.simulate_to_threshold(future_load, threshold_keys=[event], dt=0.005, save_freq=1)
simulated_moon_results = m.simulate_to_threshold(future_load, events=event, dt=0.005, save_freq=1)

grav_mars = -3.711
# You can also update the parameters after it's constructed
m.parameters['g'] = grav_mars
simulated_mars_results = m.simulate_to_threshold(future_load, threshold_keys=[event], dt=0.005, save_freq=1)
simulated_mars_results = m.simulate_to_threshold(future_load, events=event, dt=0.005, save_freq=1)

grav_venus = -8.87
m.parameters['g'] = grav_venus
simulated_venus_results = m.simulate_to_threshold(future_load, threshold_keys=[event], dt=0.005, save_freq=1)
simulated_venus_results = m.simulate_to_threshold(future_load, events=event, dt=0.005, save_freq=1)

print('Time to hit the ground: ')
print('\tvenus: {}s'.format(round(simulated_venus_results.times[-1],2)))
print('\tearth: {}s'.format(round(simulated_results.times[-1],2)))
print('\tmars: {}s'.format(round(simulated_mars_results.times[-1],2)))
print('\tmoon: {}s'.format(round(simulated_moon_results.times[-1],2)))

# We can also simulate until any event is met by neglecting the threshold_keys argument
# We can also simulate until any event is met by neglecting the events argument
simulated_results = m.simulate_to_threshold(future_load, dt=0.005, save_freq=1)
threshs_met = m.threshold_met(simulated_results.states[-1])
for (key, met) in threshs_met.items():
Expand Down
2 changes: 1 addition & 1 deletion examples/noise.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ def future_load(t=None, x=None):

# Define configuration for simulation
config = {
'threshold_keys': 'impact', # Simulate until the thrown object has impacted the ground
'events': 'impact', # Simulate until the thrown object has impacted the ground
'dt': 0.005, # Time step (s)
'save_freq': 0.5, # Frequency at which results are saved (s)
}
Expand Down
4 changes: 2 additions & 2 deletions examples/sensitivity.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ def run_example():
eods = np.empty(len(thrower_height_range))
for (i, thrower_height) in zip(range(len(thrower_height_range)), thrower_height_range):
m.parameters['thrower_height'] = thrower_height
simulated_results = m.simulate_to_threshold(threshold_keys=[event], dt =1e-3, save_freq =10)
simulated_results = m.simulate_to_threshold(events=event, dt =1e-3, save_freq =10)
eods[i] = simulated_results.times[-1]

# Step 4: Analysis
Expand All @@ -36,7 +36,7 @@ def run_example():
eods = np.empty(len(throw_speed_range))
for (i, throw_speed) in zip(range(len(throw_speed_range)), throw_speed_range):
m.parameters['throwing_speed'] = throw_speed
simulated_results = m.simulate_to_threshold(threshold_keys=[event], options={'dt':1e-3, 'save_freq':10})
simulated_results = m.simulate_to_threshold(events=event, options={'dt':1e-3, 'save_freq':10})
eods[i] = simulated_results.times[-1]

print('\nFor a reasonable range of throwing speeds, impact time is between {} and {}'.format(round(eods[0],3), round(eods[-1],3)))
Expand Down
2 changes: 1 addition & 1 deletion examples/sim_battery_eol.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ def future_loading(t, x=None):
options = {
'save_freq': 1000, # Frequency at which results are saved
'dt': 2, # Timestep
'threshold_keys': ['InsufficientCapacity'], # Simulate to InsufficientCapacity
'events': 'InsufficientCapacity', # Simulate to InsufficientCapacity
'print': True
}
simulated_results = batt.simulate_to_threshold(future_loading, **options)
Expand Down
2 changes: 1 addition & 1 deletion examples/vectorized.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ def future_load(t, x=None):

# Step 3: Simulate to threshold
# Here we are simulating till impact using the first state defined above
(times, inputs, states, outputs, event_states) = m.simulate_to_threshold(future_load, x = first_state, threshold_keys=['impact'], print = True, dt=0.1, save_freq=2)
(times, inputs, states, outputs, event_states) = m.simulate_to_threshold(future_load, x = first_state, events='impact', print = True, dt=0.1, save_freq=2)

# Now lets do the same thing but only stop when all hit the ground
def thresholds_met_eqn(thresholds_met):
Expand Down
2 changes: 1 addition & 1 deletion src/progpy/data_models/data_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -120,7 +120,7 @@ def from_model(cls, m: PrognosticsModel, load_functions: list, **kwargs) -> "Dat
# Only one function
load_functions = [load_functions]

sim_cfg_params = ['dt', 't0', 'integration_method', 'save_freq', 'save_pts', 'horizon', 'first_output', 'threshold_keys', 'x', 'thresholds_met_eqn']
sim_cfg_params = ['dt', 't0', 'integration_method', 'save_freq', 'save_pts', 'horizon', 'first_output', 'events', 'x', 'thresholds_met_eqn']

# Check format of cfg item and split into cfg for each sim if scalar
for cfg in sim_cfg_params:
Expand Down
4 changes: 2 additions & 2 deletions src/progpy/data_models/dmd.py
Original file line number Diff line number Diff line change
Expand Up @@ -416,14 +416,14 @@ def next_state(self, x, u, _):

return x

def simulate_to_threshold(self, future_loading_eqn, first_output=None, threshold_keys=None, **kwargs):
def simulate_to_threshold(self, future_loading_eqn, first_output=None, events=None, **kwargs):
# Save keyword arguments same as DMD training for approximation
kwargs_sim = kwargs.copy()
kwargs_sim['save_freq'] = self.dt
kwargs_sim['dt'] = self.dt

# Simulate to threshold at DMD time step
results = super().simulate_to_threshold(future_loading_eqn, first_output, threshold_keys, **kwargs_sim)
results = super().simulate_to_threshold(future_loading_eqn, first_output, events, **kwargs_sim)

# Interpolate results to be at user-desired time step
if 'dt' in kwargs:
Expand Down
Loading
Loading