Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Qat #49

Merged
merged 14 commits into from
Jan 19, 2024
Merged

Qat #49

merged 14 commits into from
Jan 19, 2024

Conversation

naseemap47
Copy link
Owner

@naseemap47 naseemap47 commented Oct 2, 2023

🤖 Train

You can train your YOLO-NAS model with Single Command Line

Args

-i, --data: path to data.yaml
-n, --name: Checkpoint dir name
-b, --batch: Training batch size
-e, --epoch: number of training epochs.
-s, --size: Input image size
-j, --worker: Training number of workers
-m, --model: Model type (Choices: yolo_nas_s, yolo_nas_m, yolo_nas_l)
-w, --weight: path to pre-trained model weight (ckpt_best.pth) (default: coco weight)
--gpus: Train on multiple gpus
--cpu: Train on CPU
--resume: To resume model training

Other Training Parameters:
--warmup_mode: Warmup Mode, eg: Linear Epoch Step
--warmup_initial_lr: Warmup Initial LR
--lr_warmup_epochs: LR Warmup Epochs
--initial_lr: Inital LR
--lr_mode: LR Mode, eg: cosine
--cosine_final_lr_ratio: Cosine Final LR Ratio
--optimizer: Optimizer, eg: Adam
--weight_decay: Weight Decay

Example:

python3 train.py --data /dir/dataset/data.yaml --batch 6 --epoch 100 --model yolo_nas_m --size 640

# From Pre-trained weight
python3 train.py --data /dir/dataset/data.yaml --batch 6 --epoch 100 --model yolo_nas_m --size 640 \
                 --weight runs/train2/ckpt_latest.pth

Quantization Aware Training

Args

-i, --data: path to data.yaml
-b, --batch: Training batch size
-e, --epoch: number of training epochs.
-s, --size: Input image size
-j, --worker: Training number of workers
-m, --model: Model type (Choices: yolo_nas_s, yolo_nas_m, yolo_nas_l)
-w, --weight: path to pre-trained model weight (ckpt_best.pth)
--gpus: Train on multiple gpus
--cpu: Train on CPU

Other Training Parameters:
--warmup_mode: Warmup Mode, eg: Linear Epoch Step
--warmup_initial_lr: Warmup Initial LR
--lr_warmup_epochs: LR Warmup Epochs
--initial_lr: Inital LR
--lr_mode: LR Mode, eg: cosine
--cosine_final_lr_ratio: Cosine Final LR Ratio
--optimizer: Optimizer, eg: Adam
--weight_decay: Weight Decay

Example:

python3 qat.py --data /dir/dataset/data.yaml --weight runs/train2/ckpt_best.pth --batch 6 --epoch 100 --model yolo_nas_m --size 640

@naseemap47 naseemap47 linked an issue Oct 2, 2023 that may be closed by this pull request
@naseemap47 naseemap47 linked an issue Oct 2, 2023 that may be closed by this pull request
@naseemap47 naseemap47 linked an issue Oct 2, 2023 that may be closed by this pull request
@naseemap47 naseemap47 merged commit 1685fe2 into master Jan 19, 2024
1 check passed
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Quantization aware training support Training a quantized int8 version of yolo
1 participant