Raw Data Samples:
Classification Pipeline (raw data -> feature extractor -> fusion+classify -> class probability):
The overall modeling framework for the multimodal seizure classification task in [1]:
Please install all necessary library versions by typing in terminal:
pip install -r requirements.txt
|--<_data>
|--<code> [multimodal]
|--main.py
|--helper.py
|--plot_csv.py
|--models.py
|--multimodal_RA.ipynb
|--extra
Clone this repo, and copy the _data folder from here to the root directory seen in file tree above.
The code runs from terminal using main.py
, with supporting functions automatically parsed from models.py
, helper.py
, and open-sourced functions from the folder extra
.
Plots for results can be generated using plot_csv.py
Some residual code snippets and inline results+visualization can be found in multimodal_RA.ipynb
The raw source files can be found in /SDrive/CSL/_Archive/2019/DT_LONI_Epileptogenesis_2019
Two execution samples for main.py
:
- Run Naive Bayesian Fusion with AdaBoost:
python main.py --model NBF --text _adb_fs
- Run IDSF with CCA (7 components) followed by RECC (rho=0.7) on SFS (vary features between 1~10) with SVM classifier and ROC plots:
python main.py --model CCA+SFS --roc_flag True --fixed_feat 7 --options roc_data --rho 0.7 --text _f_d_svm_feats
Please take a look at our papers below for details:
[1] Multimodal (dMRI, EEG, fMRI: 2024)
Cite:
@article{akbar2024advancing,
title={Advancing post-traumatic seizure classification and biomarker identification: Information decomposition based multimodal fusion and explainable machine learning with missing neuroimaging data},
author={Akbar, Md Navid and Ruf, Sebastian F and Singh, Ashutosh and Faghihpirayesh, Razieh and Garner, Rachael and Bennett, Alexis and Alba, Celina and La Rocca, Marianna and Imbiriba, Tales and Erdo{\u{g}}mu{\c{s}}, Deniz and others},
journal={Computerized Medical Imaging and Graphics},
pages={102386},
year={2024},
publisher={Elsevier}
}
Cite:
@inproceedings{akbar2021lesion,
title={Lesion Normalization and Supervised Learning in Post-traumatic Seizure Classification with Diffusion MRI},
author={Akbar, Md Navid and Ruf, Sebastian and Rocca, Marianna La and Garner, Rachael and Barisano, Giuseppe and Cua, Ruskin and Vespa, Paul and Erdo{\u{g}}mu{\c{s}}, Deniz and Duncan, Dominique},
booktitle={International Workshop on Computational Diffusion MRI},
pages={133--143},
year={2021},
organization={Springer}
}
Cite:
@inproceedings{faghihpirayesh2021automatic,
title={Automatic Detection of EEG Epileptiform Abnormalities in Traumatic Brain Injury using Deep Learning},
author={Faghihpirayesh, Razieh and Ruf, Sebastian and La Rocca, Marianna and Garner, Rachael and Vespa, Paul and Erdo{\u{g}}mu{\c{s}}, Deniz and Duncan, Dominique},
booktitle={2021 43rd Annual International Conference of the IEEE Engineering in Medicine \& Biology Society (EMBC)},
pages={302--305},
year={2021},
organization={IEEE}
}