Skip to content

neuroneural/undersampling-project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

93 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Undersampling Anomaly Detection Project

How to use

Create a conda environment using usp_environment.yml file and activate it.

conda env create -f usp_environment.yml
conda activate usp

You will need to set the python path in the following way:

PYTHONPATH=<FULL_PATH_TO_REPO>/undersampling-project/scripts/

where FULL_PATH_TO_REPO is the full path to the repository on your machine.

To run an experiment, run the experiment.py script. Here is its usage:

usage: experiment.py [-h] -n NOISE_DATASET -s SIGNAL_DATASET [-i SNR_INT [SNR_INT ...]] [-f N_FOLDS] [-nn NUM_NOISE] [-v] [-cv]

options:
  -h, --help            show this help message and exit
  -n NOISE_DATASET, --noise-dataset NOISE_DATASET                    [required]
                        noise dataset name (FBIRN, COBRE, VAR)
  -s SIGNAL_DATASET, --signal-dataset SIGNAL_DATASET                 [required]
                        signal dataset name (OULU, HCP)
  -i SNR_INT [SNR_INT ...], --snr-int SNR_INT [SNR_INT ...]
                        upper, lower, step of SNR interval
  -f N_FOLDS, --n-folds N_FOLDS
                        number of folds for cross-validation
  -nn NUM_NOISE, --num_noise NUM_NOISE
                        number of noise iterations
  -v, --verbose         turn on debug logging
  -cv, --cov-mat        use covariance matrix

For results, see the plot.ipynb notebook. You can modify this script to plot results of your classification experiments.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published