Skip to content

Commit

Permalink
Update tests, TODO: decomposed failing with OUT OF RANGE command buff…
Browse files Browse the repository at this point in the history
…er validation

Signed-off-by: aviator19941 <avinash.sharma@amd.com>
  • Loading branch information
aviator19941 committed Nov 19, 2024
1 parent 5b8e995 commit 06ad717
Show file tree
Hide file tree
Showing 3 changed files with 51 additions and 26 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/ci-llama-large-tests.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ jobs:
# Test with nightly releases, not what iree-turbine uses.
pip install -f https://iree.dev/pip-release-links.html --upgrade --pre \
iree-base-compiler \
iree-base-runtime \
iree-base-runtime
- name: Run llama tests
run: pytest sharktank/tests/models/llama/benchmark_amdgpu_test.py -v -s --run-nightly-llama-tests --iree-hip-target=gfx942 --html=out/index.html
Expand Down
2 changes: 1 addition & 1 deletion .github/workflows/ci-llama-quick-tests.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,7 @@ jobs:
# Test with nightly releases, not what iree-turbine uses.
pip install -f https://iree.dev/pip-release-links.html --upgrade --pre \
iree-base-compiler \
iree-base-runtime \
iree-base-runtime
- name: Run llama 8b f16 decomposed test
run: pytest sharktank/tests/models/llama/benchmark_amdgpu_test.py -v -s --iree-hip-target=gfx942 --run-quick-llama-test
Expand Down
73 changes: 49 additions & 24 deletions sharktank/tests/models/llama/benchmark_amdgpu_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,9 @@ def setUp(self):
"--iree-opt-aggressively-propagate-transposes=true",
"--iree-opt-data-tiling=false",
"--iree-preprocessing-pass-pipeline='builtin.module(util.func(iree-preprocessing-generalize-linalg-matmul-experimental))'",
"--iree-hal-force-indirect-command-buffers=true",
"--iree-stream-resource-memory-model=discrete",
"--iree-hip-legacy-sync=false",
]


Expand All @@ -63,9 +66,9 @@ class BenchmarkLlama3_1_8B(BaseBenchmarkTest):
def setUp(self):
super().setUp()
# TODO: add numpy files to Azure and download from it
self.artifacts_dir = Path("/data/llama-3.1/weights/8b")
self.artifacts_dir = Path("/data/llama3.1/weights/8b")
self.irpa_path = self.artifacts_dir / "fp16/llama3.1_8b_fp16.irpa"
self.irpa_path_fp8 = self.artifacts_dir / "f8/llama8b_fp8.irpa"
self.irpa_path_fp8 = self.artifacts_dir / "f8/llama3.1_8b_fp8.irpa"
self.tensor_parallelism_size = 1
self.dir_path_8b = self.dir_path / "llama-8b"
self.temp_dir_8b = Path(self.dir_path_8b)
Expand Down Expand Up @@ -103,6 +106,9 @@ def setUp(self):
tensor_parallelism_size=self.tensor_parallelism_size,
)
self.prefill_args_f16 = self.artifacts_dir / "prefill_args"
self.prefill_args_bs4_128_in_tokens_f16 = (
self.artifacts_dir / "prefill_args_bs4_128"
)
self.decode_args_f16 = self.artifacts_dir / "decode_args"
self.prefill_args_fp8 = self.artifacts_dir / "prefill_args_fp8"
self.decode_args_fp8 = self.artifacts_dir / "decode_args_fp8"
Expand All @@ -114,6 +120,14 @@ def setUp(self):
f"--input=@{self.prefill_args_f16}/cache_state_f16.npy",
"--benchmark_repetitions=3",
]
self.iree_run_prefill_nondecomposed_args_fp16 = [
"--function=prefill_bs4",
f"--input=@{self.prefill_args_bs4_128_in_tokens_f16}/random_tokens.npy",
f"--input=@{self.prefill_args_bs4_128_in_tokens_f16}/seq_lens.npy",
f"--input=@{self.prefill_args_bs4_128_in_tokens_f16}/seq_block_ids.npy",
f"--input=@{self.prefill_args_bs4_128_in_tokens_f16}/cs_f16.npy",
"--benchmark_repetitions=3",
]
self.iree_run_decode_args = [
"--function=decode_bs4",
f"--input=@{self.decode_args_f16}/tokens.npy",
Expand Down Expand Up @@ -181,6 +195,7 @@ def testBenchmark8B_f16_Decomposed(self):
)

@skipif_run_quick_llama_test
@pytest.mark.xfail(reason="Compile Error", strict=True, raises=IreeCompileException)
def testBenchmark8B_f16_Non_Decomposed_Prefill(self):
output_file_name = self.dir_path_8b / "f16_torch_prefill"
output_mlir = self.llama8b_f16_torch_sdpa_artifacts.create_file(
Expand Down Expand Up @@ -210,7 +225,7 @@ def testBenchmark8B_f16_Non_Decomposed_Prefill(self):
hip_device_id=self.hip_device_id,
vmfb_name=output_vmfb,
irpa_path=self.irpa_path,
args=self.iree_run_prefill_args,
args=self.iree_run_prefill_nondecomposed_args_fp16,
cwd=self.repo_root,
)

Expand Down Expand Up @@ -256,9 +271,7 @@ def testBenchmark8B_f16_Non_Decomposed(self):
cwd=self.repo_root,
)

@pytest.mark.xfail(
reason="Test not yet implemented", strict=True, raises=ExportMlirException
)
@pytest.mark.xfail(reason="Compile Error", strict=True, raises=IreeCompileException)
def testBenchmark8B_fp8_Decomposed(self):
output_file_name = self.dir_path_8b / "fp8_decomposed"
output_mlir = self.llama8b_fp8_decomposed_artifacts.create_file(
Expand Down Expand Up @@ -298,9 +311,7 @@ def testBenchmark8B_fp8_Decomposed(self):
cwd=self.repo_root,
)

@pytest.mark.xfail(
reason="Compile failure", strict=True, raises=ExportMlirException
)
@pytest.mark.xfail(reason="Compile Error", strict=True, raises=IreeCompileException)
def testBenchmark8B_fp8_Non_Decomposed(self):
output_file_name = self.dir_path_8b / "fp8_torch"
output_mlir = self.llama8b_fp8_torch_sdpa_artifacts.create_file(
Expand Down Expand Up @@ -347,7 +358,7 @@ class BenchmarkLlama3_1_70B(BaseBenchmarkTest):
def setUp(self):
super().setUp()
# TODO: add numpy files to Azure and download from it
self.artifacts_dir = Path("/data/llama-3.1/weights/70b")
self.artifacts_dir = Path("/data/llama3.1/weights/70b")
self.irpa_path = self.artifacts_dir / "fp16/llama3.1_70b_f16.irpa"
self.irpa_path_fp8 = self.artifacts_dir / "f8/llama70b_fp8.irpa"
self.tensor_parallelism_size = 8
Expand Down Expand Up @@ -387,6 +398,9 @@ def setUp(self):
tensor_parallelism_size=self.tensor_parallelism_size,
)
self.prefill_args_f16 = self.artifacts_dir / "prefill_args"
self.prefill_args_bs4_128_in_tokens_f16 = (
self.artifacts_dir / "prefill_args_bs4_128"
)
self.decode_args_f16 = self.artifacts_dir / "decode_args"
self.prefill_args_fp8 = self.artifacts_dir / "prefill_args_fp8"
self.decode_args_fp8 = self.artifacts_dir / "decode_args_fp8"
Expand All @@ -398,6 +412,14 @@ def setUp(self):
f"--input=@{self.prefill_args_f16}/cache_state_f16.npy",
"--benchmark_repetitions=3",
]
self.iree_run_prefill_nondecomposed_args_fp16 = [
"--function=prefill_bs4",
f"--input=@{self.prefill_args_bs4_128_in_tokens_f16}/random_tokens.npy",
f"--input=@{self.prefill_args_bs4_128_in_tokens_f16}/seq_lens.npy",
f"--input=@{self.prefill_args_bs4_128_in_tokens_f16}/seq_block_ids.npy",
f"--input=@{self.prefill_args_bs4_128_in_tokens_f16}/cs_f16.npy",
"--benchmark_repetitions=3",
]
self.iree_run_decode_args = [
"--function=decode_bs4",
f"--input=@{self.decode_args_f16}/tokens.npy",
Expand Down Expand Up @@ -524,9 +546,7 @@ def testBenchmark70B_f16_TP8_Non_Decomposed(self):
cwd=self.repo_root,
)

@pytest.mark.xfail(
reason="Test not yet implemented", strict=True, raises=ExportMlirException
)
@pytest.mark.xfail(reason="Compile Error", strict=True, raises=IreeCompileException)
def testBenchmark70B_fp8_TP8_Decomposed(self):
output_file_name = self.dir_path_70b / "fp8_decomposed"
output_mlir = self.llama70b_fp8_decomposed_artifacts.create_file(
Expand Down Expand Up @@ -572,9 +592,7 @@ def testBenchmark70B_fp8_TP8_Decomposed(self):
cwd=self.repo_root,
)

@pytest.mark.xfail(
reason="Test not yet implemented", strict=True, raises=ExportMlirException
)
@pytest.mark.xfail(reason="Compile Error", strict=True, raises=IreeCompileException)
def testBenchmark70B_fp8_TP8_Non_Decomposed(self):
output_file_name = self.dir_path_70b / "fp8_torch"
output_mlir = self.llama70b_fp8_torch_sdpa_artifacts.create_file(
Expand Down Expand Up @@ -627,9 +645,9 @@ class BenchmarkLlama3_1_405B(BaseBenchmarkTest):
def setUp(self):
super().setUp()
# TODO: add numpy files to Azure and download from it
self.artifacts_dir = Path("/data/llama-3.1/weights/405b")
self.artifacts_dir = Path("/data/llama3.1/weights/405b")
self.irpa_path = self.artifacts_dir / "fp16/llama3.1_405b_fp16.irpa"
self.irpa_path_fp8 = self.artifacts_dir / "f8/llama405b_fp8.irpa"
self.irpa_path_fp8 = self.artifacts_dir / "f8/llama3.1_405b_fp8.irpa"
self.tensor_parallelism_size = 8
self.dir_path_405b = self.dir_path / "llama-405b"
self.temp_dir_405b = Path(self.dir_path_405b)
Expand Down Expand Up @@ -667,6 +685,9 @@ def setUp(self):
tensor_parallelism_size=self.tensor_parallelism_size,
)
self.prefill_args_f16 = self.artifacts_dir / "prefill_args"
self.prefill_args_bs4_128_in_tokens_f16 = (
self.artifacts_dir / "prefill_args_bs4_128"
)
self.decode_args_f16 = self.artifacts_dir / "decode_args"
self.prefill_args_fp8 = self.artifacts_dir / "prefill_args_fp8"
self.decode_args_fp8 = self.artifacts_dir / "decode_args_fp8"
Expand All @@ -678,6 +699,14 @@ def setUp(self):
f"--input=@{self.prefill_args_f16}/cache_state_f16.npy",
"--benchmark_repetitions=3",
]
self.iree_run_prefill_nondecomposed_args_fp16 = [
"--function=prefill_bs4",
f"--input=@{self.prefill_args_bs4_128_in_tokens_f16}/random_tokens.npy",
f"--input=@{self.prefill_args_bs4_128_in_tokens_f16}/seq_lens.npy",
f"--input=@{self.prefill_args_bs4_128_in_tokens_f16}/seq_block_ids.npy",
f"--input=@{self.prefill_args_bs4_128_in_tokens_f16}/cs_f16.npy",
"--benchmark_repetitions=3",
]
self.iree_run_decode_args = [
"--function=decode_bs4",
f"--input=@{self.decode_args_f16}/tokens.npy",
Expand Down Expand Up @@ -799,9 +828,7 @@ def testBenchmark405B_f16_TP8_Non_Decomposed(self):
cwd=self.repo_root,
)

@pytest.mark.xfail(
reason="Test not yet implemented", strict=True, raises=ExportMlirException
)
@pytest.mark.xfail(reason="Compile Error", strict=True, raises=IreeCompileException)
def testBenchmark405B_fp8_TP8_Decomposed(self):
output_file_name = self.dir_path_405b / "fp8_decomposed"
output_mlir = self.llama405b_fp8_decomposed_artifacts.create_file(
Expand Down Expand Up @@ -847,9 +874,7 @@ def testBenchmark405B_fp8_TP8_Decomposed(self):
cwd=self.repo_root,
)

@pytest.mark.xfail(
reason="Test not yet implemented", strict=True, raises=ExportMlirException
)
@pytest.mark.xfail(reason="Compile Error", strict=True, raises=IreeCompileException)
def testBenchmark405B_fp8_TP8_Non_Decomposed(self):
output_file_name = self.dir_path_405b / "fp8_torch"
output_mlir = self.llama405b_fp8_torch_sdpa_artifacts.create_file(
Expand Down

0 comments on commit 06ad717

Please sign in to comment.