-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
15 changed files
with
933 additions
and
194 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
import numpy as np | ||
import scipy | ||
|
||
from utils import Utilities | ||
|
||
|
||
""" | ||
Utilities for computation | ||
""" | ||
class ComputeUtils: | ||
|
||
@staticmethod | ||
def interp3( | ||
x1: np.array, | ||
y1: np.array, | ||
z1: np.array, | ||
F1: np.array, | ||
x2: np.array, | ||
y2: np.array, | ||
z2: np.array | ||
) -> np.array : | ||
return scipy.interpolate.RegularGridInterpolator((x1, y1, z1), F1, 'linear', False, 0)((x2, y2, z2)) | ||
|
||
|
||
@staticmethod | ||
def meshgrid_3d(x: np.array, y: np.array, z: np.array) -> np.array: | ||
nx = x.size | ||
ny = y.size | ||
nz = z.size | ||
|
||
X = np.zeros((nx, ny, nz)) | ||
Y = np.zeros((nx, ny, nz)) | ||
Z = np.zeros((nx, ny, nz)) | ||
|
||
for i in range(0, nx): | ||
for j in range(0, ny): | ||
for k in range(0, nz): | ||
X[i][j][k] = x[i] | ||
Y[i][j][k] = y[j] | ||
Z[i][j][k] = z[k] | ||
|
||
return [X, Y, Z] | ||
|
||
|
||
@staticmethod | ||
def meshgrid_3d_single(x: np.array) -> np.array: | ||
return ComputeUtils.meshgrid_3d(x, x, x) | ||
|
||
|
||
@staticmethod | ||
def polar_decompose(R: np.array) -> np.array: | ||
U, X ,V = np.linalg.svd(R) | ||
R_orth = np.matmul(U, V.T) | ||
R_orth = Utilities.to_real(R_orth) | ||
return R_orth | ||
|
||
|
||
@staticmethod | ||
def validate_eigen_values_vectors( | ||
A: np.array, | ||
eigen_values: np.array, | ||
eigen_vectors: np.array, | ||
tolerance: float = 1e-14 | ||
) -> bool: | ||
Utilities.check(len(A.shape) == 2, 'A shape') | ||
Utilities.check(len(eigen_values.shape) == 1, 'eigen_values shape') | ||
Utilities.check(len(eigen_vectors.shape) == 2, 'eigen_vectors shape') | ||
Utilities.check(eigen_vectors.shape[1] == eigen_values.size, 'values vs. vectors') | ||
Utilities.check(eigen_vectors.shape[1] == eigen_values.size, 'values vs. vectors') | ||
Utilities.check(eigen_vectors.shape[0] == A.shape[1], 'vectors vs. A') | ||
[Utilities.check(0 < eigen_values[i], 'negative eigen_value') for i in range(eigen_values.size)] | ||
[Utilities.check(eigen_values[i] < 1 + 1e-12, 'too large an eigen_value ' + str(eigen_values[i])) for i in range(eigen_values.size)] | ||
|
||
for i in range(eigen_values.size): | ||
v = eigen_vectors[:, i] | ||
w = eigen_values[i] | ||
error = np.matmul(A, v) - w * v | ||
error_max = abs(np.max(error.flatten())) | ||
Utilities.check(error_max < tolerance, 'residual of eigenvalue ' + str(i) + ' = ' + str(error_max)) | ||
|
||
|
||
@staticmethod | ||
def validate_lsq_linear( | ||
A: np.array, | ||
b: np.array, | ||
M: np.array, | ||
tolerance: float = 1e-14 | ||
) -> bool: | ||
Utilities.check(len(A.shape) == 2, 'A shape') | ||
Utilities.check(len(b.shape) == 2, 'b shape') | ||
Utilities.check(len(M.shape) == 2, 'M shape') | ||
Utilities.check(A.shape[0] == b.shape[0], 'A vs. b') | ||
Utilities.check(A.shape[1] == M.shape[0], 'A vs. M') | ||
Utilities.check(M.shape[0] == b.shape[1], 'M vs. b') | ||
|
||
for i in range(A.shape[0]): | ||
error_max = abs(np.max((np.matmul(A[i, :], M) - b[i, :]).flatten())) | ||
Utilities.check(error_max < tolerance, 'residual of lsq element ' + str(i) + ' = ' + str(error_max)) | ||
|
||
|
||
#A[:,i] * M = b[:, i] | ||
@staticmethod | ||
def lsq_linear( | ||
A: np.array, | ||
b: np.array | ||
) -> np.array: | ||
M = np.transpose(np.matmul( | ||
np.matmul(np.transpose(b), A), | ||
np.linalg.pinv(np.matmul(np.transpose(A) , A)) | ||
)) | ||
|
||
return M |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
import unittest | ||
|
||
import numpy as np | ||
from compute import ComputeUtils | ||
from utils import Utilities | ||
|
||
|
||
class ComputeUtilsTest(unittest.TestCase): | ||
|
||
def test_validate_lsq_linear(self: unittest.TestCase) -> None: | ||
# Initialize | ||
M_expected = np.array([ | ||
[1, -1], | ||
[2, 3] | ||
]) | ||
A = np.array([ | ||
[0, -4], | ||
[-1, 1], | ||
[5, 0], | ||
[1, 2], | ||
]) | ||
b = np.matmul(A, M_expected) | ||
|
||
# Run | ||
M_actual = ComputeUtils.lsq_linear(A, b) | ||
|
||
# Assert | ||
ComputeUtils.validate_lsq_linear(A, b, M_actual, tolerance = 1e-14) # real-life test | ||
Utilities.assert_almost_equal(self, M_actual, M_expected, p = 1e-14) # test with gold-standard | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |
Oops, something went wrong.