The code for the paper "PGRA: Projected Graph Relation-Feature Attention Network for Heterogeneous Information Network Embedding", Information Sciences.
We tested the code on:
- python 3.6
- pytorch 1.5.1
- networkx 2.3
other requirements:
- numpy
- pandas
Run the code using the command:
python src/main.py [Dataset_Name] [options]
We provide datasets in "data.zip" file.
For PGRA-DistMult, use default hyperparameters
For PGRA-TransH, use
--score [l1/l2] --pre transh
For the best neighbor regularization settings (lambda) on DBLP/Yelp/DM/Aminer, use
--best_lambda
or to manually set, use
--nb_reg [value]
If you find the code helpful, please cite our work:
@article{chairatanakul2021pgra,
title = {PGRA: Projected graph relation-feature attention network for heterogeneous information network embedding},
journal = {Information Sciences},
volume = {570},
pages = {769-794},
year = {2021},
issn = {0020-0255},
doi = {https://doi.org/10.1016/j.ins.2021.04.070},
url = {https://www.sciencedirect.com/science/article/pii/S0020025521004059},
author = {Nuttapong Chairatanakul and Xin Liu and Tsuyoshi Murata}
}