Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Figure 2 fixes #25

Merged
merged 9 commits into from
Feb 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Data/clustered_network.json

Large diffs are not rendered by default.

1 change: 0 additions & 1 deletion Data/clustering.json

This file was deleted.

2 changes: 1 addition & 1 deletion Data/cm.json

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion Data/erdos-renyi.json

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion Data/sbm.json

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion Data/watts-strogatz.json

Large diffs are not rendered by default.

Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added Figures/Fig2/generative_models_fce.pdf
Binary file not shown.
Binary file added Figures/Fig2/generative_models_fce.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Binary file added Figures/Fig2/generative_models_fs-norm-random.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Binary file added Figures/Fig2/generative_models_fs.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added Figures/Fig2/generative_models_ps.pdf
Binary file not shown.
Binary file added Figures/Fig2/generative_models_ps.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file removed Figures/Fig2/generative_models_sps.png
Binary file not shown.
2 changes: 1 addition & 1 deletion cm.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
n = 50
kmin = 2
kmax = n - 1
alpha_list = np.linspace(1.5, 4, n_a)
alpha_list = np.linspace(-4, -1.5, n_a)
beta_list = np.linspace(0.0, 1.0, n_b)
rho0 = 1.0
gamma = 0.1
Expand Down
75 changes: 67 additions & 8 deletions collect_clustered_network.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,12 +55,39 @@ def get_metrics(f, dir, c_dict, b_dict, s_dict, r_dict):
A = np.array(data["A"])
samples = np.array(data["samples"])

rho = density(A)

ps = posterior_similarity(samples, A)
sps = samplewise_posterior_similarity(samples, A)
fs = f_score(samples, A)
fs_norm_random = f_score(samples, A, normalize=True, rho_guess=0.5)
fs_norm_density = f_score(samples, A, normalize=True, rho_guess=rho)
fc = fraction_of_correct_entries(samples, A)
fc_norm_random = fraction_of_correct_entries(
samples, A, normalize=True, rho_guess=0.5
)
fc_norm_density = fraction_of_correct_entries(
samples, A, normalize=True, rho_guess=rho
)
pr = precision(samples, A)
re = recall(samples, A)

print((i, j, k, l), flush=True)

return i, j, k, l, ps, sps, fc
return (
i,
j,
k,
l,
ps,
fs,
fs_norm_random,
fs_norm_density,
fc,
fc_norm_random,
fc_norm_density,
pr,
re,
)


# get number of available cores
Expand All @@ -79,26 +106,58 @@ def get_metrics(f, dir, c_dict, b_dict, s_dict, r_dict):
n_r = len(r_dict)

ps = np.zeros((n_c, n_b, n_s, n_r))
sps = np.zeros((n_c, n_b, n_s, n_r))
fs = np.zeros((n_c, n_b, n_s, n_r))
fs_norm_random = np.zeros((n_c, n_b, n_s, n_r))
fs_norm_density = np.zeros((n_c, n_b, n_s, n_r))
fce = np.zeros((n_c, n_b, n_s, n_r))
fce_norm_random = np.zeros((n_c, n_b, n_s, n_r))
fce_norm_density = np.zeros((n_c, n_b, n_s, n_r))
pr = np.zeros((n_c, n_b, n_s, n_r))
re = np.zeros((n_c, n_b, n_s, n_r))

arglist = []
for f in os.listdir(data_dir):
arglist.append((f, data_dir, c_dict, b_dict, s_dict, r_dict))

data = Parallel(n_jobs=n_processes)(delayed(get_metrics)(*arg) for arg in arglist)

for i, j, k, l, pos_sim, s_pos_sim, frac_corr in data:
ps[i, j, k, l] = pos_sim
sps[i, j, k, l] = s_pos_sim
fce[i, j, k, l] = frac_corr
for (
i,
j,
k,
l,
metric1,
metric2,
metric3,
metric4,
metric5,
metric6,
metric7,
metric8,
metric9,
) in data:
ps[i, j, k, l] = metric1
fs[i, j, k, l] = metric2
fs_norm_random[i, j, k, l] = metric3
fs_norm_density[i, j, k, l] = metric4
fce[i, j, k, l] = metric5
fce_norm_random[i, j, k, l] = metric6
fce_norm_density[i, j, k, l] = metric7
pr[i, j, k, l] = metric8
re[i, j, k, l] = metric9

data = {}
data["beta"] = list(b_dict)
data["size"] = list(s_dict)
data["sps"] = sps.tolist()
data["ps"] = ps.tolist()
data["fs"] = fs.tolist()
data["fs-norm-random"] = fs_norm_random.tolist()
data["fs-norm-density"] = fs_norm_density.tolist()
data["fce"] = fce.tolist()
data["fce-norm-random"] = fce_norm_random.tolist()
data["fce-norm-density"] = fce_norm_density.tolist()
data["precision"] = pr.tolist()
data["recall"] = re.tolist()
datastring = json.dumps(data)

with open("Data/clustered_network.json", "w") as output_file:
Expand Down
76 changes: 68 additions & 8 deletions collect_cm.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,12 +55,40 @@ def get_metrics(f, dir, c_dict, b_dict, a_dict, r_dict):
A = np.array(data["A"])
samples = np.array(data["samples"])

rho = density(A)

ps = posterior_similarity(samples, A)
sps = samplewise_posterior_similarity(samples, A)
fs = f_score(samples, A)
fs_norm_random = f_score(samples, A, normalize=True, rho_guess=0.5)
fs_norm_density = f_score(samples, A, normalize=True, rho_guess=rho)
fc = fraction_of_correct_entries(samples, A)
fc_norm_random = fraction_of_correct_entries(
samples, A, normalize=True, rho_guess=0.5
)
fc_norm_density = fraction_of_correct_entries(
samples, A, normalize=True, rho_guess=rho
)

pr = precision(samples, A)
re = recall(samples, A)

print((i, j, k, l), flush=True)

return i, j, k, l, ps, sps, fc
return (
i,
j,
k,
l,
ps,
fs,
fs_norm_random,
fs_norm_density,
fc,
fc_norm_random,
fc_norm_density,
pr,
re,
)


# get number of available cores
Expand All @@ -74,26 +102,58 @@ def get_metrics(f, dir, c_dict, b_dict, a_dict, r_dict):
n_r = len(r_dict)

ps = np.zeros((n_c, n_b, n_a, n_r))
sps = np.zeros((n_c, n_b, n_a, n_r))
fs = np.zeros((n_c, n_b, n_a, n_r))
fs_norm_random = np.zeros((n_c, n_b, n_a, n_r))
fs_norm_density = np.zeros((n_c, n_b, n_a, n_r))
fce = np.zeros((n_c, n_b, n_a, n_r))
fce_norm_random = np.zeros((n_c, n_b, n_a, n_r))
fce_norm_density = np.zeros((n_c, n_b, n_a, n_r))
pr = np.zeros((n_c, n_b, n_a, n_r))
re = np.zeros((n_c, n_b, n_a, n_r))

arglist = []
for f in os.listdir(data_dir):
arglist.append((f, data_dir, c_dict, b_dict, a_dict, r_dict))

data = Parallel(n_jobs=n_processes)(delayed(get_metrics)(*arg) for arg in arglist)

for i, j, k, l, pos_sim, s_pos_sim, frac_corr in data:
ps[i, j, k, l] = pos_sim
sps[i, j, k, l] = s_pos_sim
fce[i, j, k, l] = frac_corr
for (
i,
j,
k,
l,
metric1,
metric2,
metric3,
metric4,
metric5,
metric6,
metric7,
metric8,
metric9,
) in data:
ps[i, j, k, l] = metric1
fs[i, j, k, l] = metric2
fs_norm_random[i, j, k, l] = metric3
fs_norm_density[i, j, k, l] = metric4
fce[i, j, k, l] = metric5
fce_norm_random[i, j, k, l] = metric6
fce_norm_density[i, j, k, l] = metric7
pr[i, j, k, l] = metric8
re[i, j, k, l] = metric9

data = {}
data["beta"] = list(b_dict)
data["alpha"] = list(a_dict)
data["sps"] = sps.tolist()
data["ps"] = ps.tolist()
data["fs"] = fs.tolist()
data["fs-norm-random"] = fs_norm_random.tolist()
data["fs-norm-density"] = fs_norm_density.tolist()
data["fce"] = fce.tolist()
data["fce-norm-random"] = fce_norm_random.tolist()
data["fce-norm-density"] = fce_norm_density.tolist()
data["precision"] = pr.tolist()
data["recall"] = re.tolist()
datastring = json.dumps(data)

with open("Data/cm.json", "w") as output_file:
Expand Down
76 changes: 68 additions & 8 deletions collect_erdos-renyi.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,12 +55,40 @@ def get_metrics(f, dir, c_dict, b_dict, p_dict, r_dict):
A = np.array(data["A"])
samples = np.array(data["samples"])

rho = density(A)

ps = posterior_similarity(samples, A)
sps = samplewise_posterior_similarity(samples, A)
fs = f_score(samples, A)
fs_norm_random = f_score(samples, A, normalize=True, rho_guess=0.5)
fs_norm_density = f_score(samples, A, normalize=True, rho_guess=rho)
fc = fraction_of_correct_entries(samples, A)
fc_norm_random = fraction_of_correct_entries(
samples, A, normalize=True, rho_guess=0.5
)
fc_norm_density = fraction_of_correct_entries(
samples, A, normalize=True, rho_guess=rho
)

pr = precision(samples, A)
re = recall(samples, A)

print((i, j, k, l), flush=True)

return i, j, k, l, ps, sps, fc
return (
i,
j,
k,
l,
ps,
fs,
fs_norm_random,
fs_norm_density,
fc,
fc_norm_random,
fc_norm_density,
pr,
re,
)


# get number of available cores
Expand All @@ -74,26 +102,58 @@ def get_metrics(f, dir, c_dict, b_dict, p_dict, r_dict):
n_r = len(r_dict)

ps = np.zeros((n_c, n_b, n_p, n_r))
sps = np.zeros((n_c, n_b, n_p, n_r))
fs = np.zeros((n_c, n_b, n_p, n_r))
fs_norm_random = np.zeros((n_c, n_b, n_p, n_r))
fs_norm_density = np.zeros((n_c, n_b, n_p, n_r))
fce = np.zeros((n_c, n_b, n_p, n_r))
fce_norm_random = np.zeros((n_c, n_b, n_p, n_r))
fce_norm_density = np.zeros((n_c, n_b, n_p, n_r))
pr = np.zeros((n_c, n_b, n_p, n_r))
re = np.zeros((n_c, n_b, n_p, n_r))

arglist = []
for f in os.listdir(data_dir):
arglist.append((f, data_dir, c_dict, b_dict, p_dict, r_dict))

data = Parallel(n_jobs=n_processes)(delayed(get_metrics)(*arg) for arg in arglist)

for i, j, k, l, pos_sim, s_pos_sim, frac_corr in data:
ps[i, j, k, l] = pos_sim
sps[i, j, k, l] = s_pos_sim
fce[i, j, k, l] = frac_corr
for (
i,
j,
k,
l,
metric1,
metric2,
metric3,
metric4,
metric5,
metric6,
metric7,
metric8,
metric9,
) in data:
ps[i, j, k, l] = metric1
fs[i, j, k, l] = metric2
fs_norm_random[i, j, k, l] = metric3
fs_norm_density[i, j, k, l] = metric4
fce[i, j, k, l] = metric5
fce_norm_random[i, j, k, l] = metric6
fce_norm_density[i, j, k, l] = metric7
pr[i, j, k, l] = metric8
re[i, j, k, l] = metric9

data = {}
data["beta"] = list(b_dict)
data["p"] = list(p_dict)
data["sps"] = sps.tolist()
data["ps"] = ps.tolist()
data["fs"] = fs.tolist()
data["fs-norm-random"] = fs_norm_random.tolist()
data["fs-norm-density"] = fs_norm_density.tolist()
data["fce"] = fce.tolist()
data["fce-norm-random"] = fce_norm_random.tolist()
data["fce-norm-density"] = fce_norm_density.tolist()
data["precision"] = pr.tolist()
data["recall"] = re.tolist()
datastring = json.dumps(data)

with open("Data/erdos-renyi.json", "w") as output_file:
Expand Down
Loading
Loading