Skip to content

Commit

Permalink
Update outdated code and documentation
Browse files Browse the repository at this point in the history
- Introduce fail-fast in various places to improve error reporting
- Add a docker-compose-no-init.yml for running the project in discrete steps
- Consolidate README.md
- Update URL for RankyMcRankFace.jar
  • Loading branch information
Cuong Tham committed Oct 6, 2021
1 parent 64c0474 commit b86b08a
Show file tree
Hide file tree
Showing 10 changed files with 54 additions and 136 deletions.
2 changes: 1 addition & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -4,5 +4,5 @@ model.txt
movie_judgments_wfeatures.*.txt
movie_judgments_wfeatur*.txt
tmdb.json
train/RankyMcRankFace-0.1.1.jar
train/RankyMcRankFace-*.jar
train/*.pyc
16 changes: 11 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,24 +2,30 @@

This demo uses data from [TheMovieDB](http://themoviedb.org) (TMDB) to demonstrate using [Ranklib](https://sourceforge.net/p/lemur/wiki/RankLib/) learning to rank models with Elasticsearch.

You can go through the individual steps, or if you want to just skip to the end, you can use Docker:
# Run Everything in One Step

```
docker-compose up
```

And browse to http://localhost:8000
If project files have been modified after the initial run, do this to update the docker images:
```
docker-compose build
docker-compose up
```

And browse to http://localhost:8000

# Install Dependencies and prep data...
# Run Each Step One by One

This demo requires

- Python 3+
- Python `elasticsearch` and `requests` libraries

## Install Dependencies
```
pip3 install requests elasticsearch5 parse jinja
pip3 install requests elasticsearch5 parse jinja2
```

## Download the TMDB Data & Ranklib Jar
Expand All @@ -36,7 +42,7 @@ cd train
Start a supported version of Elasticsearch and follow the [instructions to install](https://github.com/o19s/elasticsearch-learning-to-rank#installing) the learning to rank plugin.

```
docker run -d -p 9201:9200 -p 9301:9300 -e "discovery.type=single-node" --name elasticsearch5 elasticsearch:5.6.4
docker-compose -f docker-compose-no-init.yml up
```

## Index to Elasticsearch
Expand Down
23 changes: 23 additions & 0 deletions docker-compose-no-init.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
# Docker compose file for the application.

#version: '2' # on CircleCI the version and services cause build to puke.
#services:

app:
build: .
dockerfile: ./deploy/app/Dockerfile
environment:
- ELASTICSEARCH_URL=http://localhost:9200
links:
- elasticsearch
ports:
- "8000:8000"

elasticsearch:
build: .
dockerfile: ./deploy/elasticsearch/Dockerfile
environment:
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
ports:
- "9200:9200"
- "9300:9300"
2 changes: 1 addition & 1 deletion docker-compose.yml
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
links:
- elasticsearch
ports:
- "80:80"
- "8000:8000"

elasticsearch:
build: .
Expand Down
116 changes: 0 additions & 116 deletions train/README.md

This file was deleted.

4 changes: 3 additions & 1 deletion train/loadFeatures.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,9 @@ def loadFeatures(esHost, featureSetName='movie_features'):
fullPath = urljoin(esHost, path)
print("POST %s" % fullPath)
print(json.dumps(featureSet, indent=2))
resp = requests.post(fullPath, json.dumps(featureSet))
resp = requests.post(fullPath, json.dumps(featureSet), headers={'Content-Type': 'application/json'})
if resp.status_code != 201:
raise Exception('Posting to %s is not returning 201, got %s' % (resp.url, resp.status_code))
print("%s" % resp.status_code)
print("%s" % resp.text)

Expand Down
4 changes: 1 addition & 3 deletions train/movielens.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,3 @@

import json
from elasticsearch5 import Elasticsearch

Expand Down Expand Up @@ -51,9 +50,8 @@ def getExpansions(es, mlensIds, minDocCount=1, expandField='liked_movies.keyword


def expansionMlens(es, keywords):
esMlens = Elasticsearch('http://elasticsearch:9200', timeout=1000)
topMlens = getTopMlensIds(es, keywords=keywords, searchField="title", index="tmdb")
return getExpansions(es=esMlens, mlensIds=topMlens, expandField="liked_movies.keyword", shardSize=10)
return getExpansions(es=es, mlensIds=topMlens, expandField="liked_movies.keyword", shardSize=10)


if __name__ == "__main__":
Expand Down
4 changes: 2 additions & 2 deletions train/prepare.sh
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
#!/bin/bash
wget https://dl.bintray.com/o19s/RankyMcRankFace/com/o19s/RankyMcRankFace/0.1.1/RankyMcRankFace-0.1.1.jar
#!/bin/bash -e
wget https://github.com/o19s/RankyMcRankFace/releases/download/0.1.0/RankyMcRankFace-0.1.0.jar
wget http://es-learn-to-rank.labs.o19s.com/tmdb.json
wget http://files.grouplens.org/datasets/movielens/ml-20m.zip
unzip ml-20m.zip
8 changes: 6 additions & 2 deletions train/ratingsToES.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,8 +51,12 @@ def indexToElastic(es):


if __name__ == "__main__":
from sys import argv
es_url = argv[1]
if len(argv) > 1:
es_url = argv[1]
else:
config = configparser.ConfigParser()
config.read('settings.cfg')
es_url = config['DEFAULT']['ESHost']

es = Elasticsearch(es_url)
indexToElastic(es)
Expand Down
11 changes: 6 additions & 5 deletions train/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,12 +11,13 @@ def trainModel(trainingData, testData, modelOutput, whichModel=8):
# - each is trained against a proportion of the training data (-srate)
# - each is trained using a subset of the features (-frate)
# - each can be either a MART or LambdaMART model (-rtype 6 lambda mart)
cmd = "java -jar RankyMcRankFace-0.1.1.jar -metric2t NDCG@10 -bag 10 -srate 0.6 -frate 0.6 -rtype 6 -shrinkage 0.1 -tree 80 -ranker %s -train %s -test %s -save %s -feature features.txt" % (whichModel, trainingData, testData, modelOutput)
cmd = "java -jar RankyMcRankFace-0.1.0.jar -metric2t NDCG@10 -bag 10 -srate 0.6 -frate 0.6 -rtype 6 -shrinkage 0.1 -tree 80 -ranker %s -train %s -test %s -save %s -feature features.txt" % (whichModel, trainingData, testData, modelOutput)
print("*********************************************************************")
print("*********************************************************************")
print("Running %s" % cmd)
os.system(cmd)
pass
r = os.system(cmd)
if r != 0:
raise Exception('Unable to execute command cmd %s' % cmd)


def partitionJudgments(judgments, testProportion=0.1):
Expand Down Expand Up @@ -54,7 +55,7 @@ def saveModel(esHost, scriptName, featureSet, modelFname):
path = "_ltr/_clearcache"
fullPath = urljoin(esHost, path)
print("POST %s" % fullPath)
resp = requests.post(fullPath)
resp = requests.post(fullPath, headers={'Content-Type': 'application/json'})
if (resp.status_code >= 300):
print(resp.text)

Expand All @@ -64,7 +65,7 @@ def saveModel(esHost, scriptName, featureSet, modelFname):
fullPath = urljoin(esHost, path)
modelPayload['model']['model']['definition'] = modelContent
print("POST %s" % fullPath)
resp = requests.post(fullPath, json.dumps(modelPayload))
resp = requests.post(fullPath, json.dumps(modelPayload), headers={'Content-Type': 'application/json'})
print(resp.status_code)
if (resp.status_code >= 300):
print(resp.text)
Expand Down

0 comments on commit b86b08a

Please sign in to comment.