-
Notifications
You must be signed in to change notification settings - Fork 213
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feature: online pca algorithm (#2550)
- Loading branch information
1 parent
ce14434
commit 7a304ec
Showing
42 changed files
with
2,388 additions
and
17 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
31 changes: 31 additions & 0 deletions
31
cpp/oneapi/dal/algo/pca/backend/cpu/finalize_train_kernel.hpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
/******************************************************************************* | ||
* Copyright 2023 Intel Corporation | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*******************************************************************************/ | ||
|
||
#pragma once | ||
|
||
#include "oneapi/dal/algo/pca/train_types.hpp" | ||
#include "oneapi/dal/backend/dispatcher.hpp" | ||
|
||
namespace oneapi::dal::pca::backend { | ||
|
||
template <typename Float, typename Method, typename Task> | ||
struct finalize_train_kernel_cpu { | ||
train_result<Task> operator()(const dal::backend::context_cpu& ctx, | ||
const detail::descriptor_base<Task>& params, | ||
const partial_train_result<Task>& input) const; | ||
}; | ||
|
||
} // namespace oneapi::dal::pca::backend |
150 changes: 150 additions & 0 deletions
150
cpp/oneapi/dal/algo/pca/backend/cpu/finalize_train_kernel_cov.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,150 @@ | ||
/******************************************************************************* | ||
* Copyright 2023 Intel Corporation | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*******************************************************************************/ | ||
|
||
#include <daal/src/algorithms/pca/pca_dense_correlation_online_kernel.h> | ||
#include <daal/src/algorithms/covariance/covariance_hyperparameter_impl.h> | ||
#include "daal/src/algorithms/covariance/covariance_kernel.h" | ||
|
||
#include "oneapi/dal/algo/pca/backend/common.hpp" | ||
#include "oneapi/dal/algo/pca/backend/cpu/finalize_train_kernel.hpp" | ||
#include "oneapi/dal/backend/interop/common.hpp" | ||
|
||
#include "oneapi/dal/backend/interop/error_converter.hpp" | ||
#include "oneapi/dal/backend/interop/table_conversion.hpp" | ||
#include "oneapi/dal/table/row_accessor.hpp" | ||
|
||
namespace oneapi::dal::pca::backend { | ||
|
||
using dal::backend::context_cpu; | ||
using descriptor_t = detail::descriptor_base<task::dim_reduction>; | ||
using model_t = model<task::dim_reduction>; | ||
|
||
namespace interop = dal::backend::interop; | ||
|
||
namespace daal_pca = daal::algorithms::pca; | ||
namespace daal_cov = daal::algorithms::covariance; | ||
namespace interop = dal::backend::interop; | ||
|
||
template <typename Float, daal::CpuType Cpu> | ||
using daal_pca_cor_kernel_t = daal_pca::internal::PCACorrelationKernel<daal::online, Float, Cpu>; | ||
|
||
template <typename Float, daal::CpuType Cpu> | ||
using daal_cov_kernel_t = | ||
daal_cov::internal::CovarianceDenseOnlineKernel<Float, daal_cov::Method::defaultDense, Cpu>; | ||
|
||
template <typename Float, typename Task> | ||
static train_result<Task> call_daal_kernel_finalize_train(const context_cpu& ctx, | ||
const descriptor_t& desc, | ||
const partial_train_result<Task>& input) { | ||
const std::int64_t component_count = | ||
get_component_count(desc, input.get_partial_crossproduct()); | ||
const std::int64_t column_count = input.get_partial_crossproduct().get_column_count(); | ||
|
||
auto result = train_result<task::dim_reduction>{}.set_result_options(desc.get_result_options()); | ||
|
||
auto arr_eigvec = array<Float>::empty(column_count * component_count); | ||
auto arr_eigval = array<Float>::empty(1 * component_count); | ||
|
||
const auto daal_eigenvectors = | ||
interop::convert_to_daal_homogen_table(arr_eigvec, component_count, column_count); | ||
const auto daal_eigenvalues = | ||
interop::convert_to_daal_homogen_table(arr_eigval, 1, component_count); | ||
|
||
auto rows_count_global = | ||
row_accessor<const Float>(input.get_partial_n_rows()).pull({ 0, -1 })[0]; | ||
auto arr_means = array<Float>::empty(column_count); | ||
const auto daal_means = interop::convert_to_daal_homogen_table(arr_means, 1, column_count); | ||
daal_cov::internal::Hyperparameter daal_hyperparameter; | ||
/// the logic of block size calculation is copied from DAAL, | ||
/// to be changed to passing the values from the performance model | ||
std::int64_t blockSize = 140; | ||
if (ctx.get_enabled_cpu_extensions() == dal::detail::cpu_extension::avx512) { | ||
const std::int64_t row_count = rows_count_global; | ||
if (5000 < row_count && row_count <= 50000) { | ||
blockSize = 1024; | ||
} | ||
} | ||
interop::status_to_exception( | ||
daal_hyperparameter.set(daal_cov::internal::denseUpdateStepBlockSize, blockSize)); | ||
auto daal_crossproduct = | ||
interop::convert_to_daal_table<Float>(input.get_partial_crossproduct()); | ||
auto daal_sums = interop::convert_to_daal_table<Float>(input.get_partial_sum()); | ||
const auto daal_nobs = interop::convert_to_daal_table<Float>(input.get_partial_n_rows()); | ||
|
||
auto arr_cor_matrix = array<Float>::empty(column_count * column_count); | ||
const auto daal_cor_matrix = | ||
interop::convert_to_daal_homogen_table(arr_cor_matrix, column_count, column_count); | ||
daal_cov::Parameter daal_parameter; | ||
daal_parameter.outputMatrixType = daal_cov::correlationMatrix; | ||
|
||
interop::status_to_exception( | ||
interop::call_daal_kernel_finalize_compute<Float, daal_cov_kernel_t>( | ||
ctx, | ||
daal_nobs.get(), | ||
daal_crossproduct.get(), | ||
daal_sums.get(), | ||
daal_cor_matrix.get(), | ||
daal_means.get(), | ||
&daal_parameter, | ||
&daal_hyperparameter)); | ||
|
||
const auto data_to_compute = daal_cor_matrix; | ||
{ | ||
const auto status = dal::backend::dispatch_by_cpu(ctx, [&](auto cpu) { | ||
constexpr auto cpu_type = interop::to_daal_cpu_type<decltype(cpu)>::value; | ||
return daal_pca_cor_kernel_t<Float, cpu_type>().computeCorrelationEigenvalues( | ||
*data_to_compute, | ||
*daal_eigenvectors, | ||
*daal_eigenvalues); | ||
}); | ||
|
||
interop::status_to_exception(status); | ||
} | ||
|
||
if (desc.get_result_options().test(result_options::eigenvectors)) { | ||
const auto mdl = model_t{}.set_eigenvectors( | ||
homogen_table::wrap(arr_eigvec, component_count, column_count)); | ||
result.set_model(mdl); | ||
} | ||
|
||
if (desc.get_result_options().test(result_options::eigenvalues)) { | ||
result.set_eigenvalues(homogen_table::wrap(arr_eigval, 1, component_count)); | ||
} | ||
|
||
return result; | ||
} | ||
|
||
template <typename Float, typename Task> | ||
static train_result<Task> finalize_train(const context_cpu& ctx, | ||
const descriptor_t& desc, | ||
const partial_train_result<Task>& input) { | ||
return call_daal_kernel_finalize_train<Float>(ctx, desc, input); | ||
} | ||
|
||
template <typename Float> | ||
struct finalize_train_kernel_cpu<Float, method::cov, task::dim_reduction> { | ||
train_result<task::dim_reduction> operator()( | ||
const context_cpu& ctx, | ||
const descriptor_t& desc, | ||
const partial_train_result<task::dim_reduction>& input) const { | ||
return finalize_train<Float, task::dim_reduction>(ctx, desc, input); | ||
} | ||
}; | ||
|
||
template struct finalize_train_kernel_cpu<float, method::cov, task::dim_reduction>; | ||
template struct finalize_train_kernel_cpu<double, method::cov, task::dim_reduction>; | ||
|
||
} // namespace oneapi::dal::pca::backend |
Oops, something went wrong.