-
Notifications
You must be signed in to change notification settings - Fork 1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
src: cpu: aarch64: Enable matmul static quantisation.
- Loading branch information
1 parent
d84a663
commit 4052b9b
Showing
4 changed files
with
327 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,217 @@ | ||
/******************************************************************************* | ||
* Copyright 2025 Arm Ltd. and affiliates | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*******************************************************************************/ | ||
|
||
#include "cpu/aarch64/matmul/acl_lowp_matmul_sq.hpp" | ||
|
||
#include "arm_compute/core/utils/quantization/AsymmHelpers.h" | ||
#include "arm_compute/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCore.h" | ||
#include "arm_compute/runtime/NEON/functions/NEQuantizationLayer.h" | ||
|
||
#include "cpu/aarch64/acl_utils.hpp" | ||
|
||
namespace dnnl { | ||
namespace impl { | ||
namespace cpu { | ||
namespace aarch64 { | ||
namespace matmul { | ||
status_t acl_lowp_matmul_sq_resource_t::configure( | ||
const acl_lowp_matmul_sq_conf_t &almc) { | ||
if (!acl_obj_) return status::out_of_memory; | ||
acl_obj_->src_tensor.allocator()->init(almc.src_tensor_info); | ||
acl_obj_->wei_tensor.allocator()->init(almc.wei_tensor_info); | ||
if (almc.with_bias) { | ||
acl_obj_->bia_tensor.allocator()->init(almc.bia_tensor_info); | ||
} | ||
acl_obj_->dst_tensor.allocator()->init(almc.dst_tensor_info); | ||
arm_compute::QuantizationInfo qi {1.0, 0, true}; | ||
acl_obj_->src_tensor.info()->set_quantization_info(qi); | ||
acl_obj_->wei_tensor.info()->set_quantization_info(qi); | ||
acl_obj_->dst_tensor.info()->set_quantization_info(qi); | ||
acl_obj_->gemm.configure(&acl_obj_->src_tensor, &acl_obj_->wei_tensor, | ||
almc.with_bias ? &acl_obj_->bia_tensor : nullptr, | ||
&acl_obj_->dst_tensor, almc.gemm_info); | ||
return status::success; | ||
} | ||
status_t acl_lowp_matmul_sq_t::pd_t::init(engine_t *engine) { | ||
VDISPATCH_MATMUL(set_default_formats(), "failed to set default formats"); | ||
using smask_t = primitive_attr_t::skip_mask_t; | ||
VDISPATCH_MATMUL( | ||
attr()->has_default_values(smask_t::scales_runtime | ||
| smask_t::zero_points_runtime | smask_t::post_ops), | ||
"only scale, zero point and post-ops attrs supported"); | ||
VDISPATCH_MATMUL(attr()->scales_.get(DNNL_ARG_SRC).mask_ == 0 | ||
&& attr()->zero_points_.get(DNNL_ARG_SRC) == 0 | ||
&& attr()->scales_.get(DNNL_ARG_WEIGHTS).mask_ == 0 | ||
&& attr()->zero_points_.get(DNNL_ARG_WEIGHTS) == 0 | ||
&& attr()->scales_.get(DNNL_ARG_DST).mask_ == 0 | ||
&& attr()->zero_points_.get(DNNL_ARG_DST) == 0, | ||
"common scales and zero points only"); | ||
VDISPATCH_MATMUL( | ||
!has_runtime_dims_or_strides(), VERBOSE_RUNTIMEDIM_UNSUPPORTED); | ||
const memory_desc_wrapper src_d(src_md_); | ||
const memory_desc_wrapper wei_d(weights_md_); | ||
const memory_desc_wrapper bia_d(bias_md_); | ||
const memory_desc_wrapper dst_d(dst_md_); | ||
using namespace data_type; | ||
VDISPATCH_MATMUL(utils::one_of(src_d.data_type(), s8, u8) | ||
&& wei_d.data_type() == s8 | ||
&& src_d.data_type() == s8 | ||
? dst_d.data_type() == s8 | ||
: dst_d.data_type() == u8, | ||
VERBOSE_UNSUPPORTED_DT_CFG); | ||
VDISPATCH_MATMUL(utils::one_of(bia_d.data_type(), f32, undef), | ||
VERBOSE_UNSUPPORTED_DT_CFG); | ||
// reject in case the op is running in a Neoverse-N1. | ||
VDISPATCH_MATMUL(arm_compute::CPUInfo::get().has_i8mm(), | ||
"Neoverse-N1 not supported"); | ||
VDISPATCH_MATMUL(src_d.matches_tag(format_tag::ab) | ||
&& wei_d.matches_tag(format_tag::ab) | ||
&& dst_d.matches_tag(format_tag::ab), | ||
VERBOSE_UNSUPPORTED_TAG); | ||
VDISPATCH_MATMUL_SC( | ||
memory_desc_init_by_tag(bias_md_, bias_md_.ndims, bias_md_.dims, | ||
bias_md_.data_type, format_tag::ab), | ||
VERBOSE_UNSUPPORTED_BIAS_CFG); | ||
// We set the QuantizationInfo to be dynamic because it is re-set in run() | ||
almc_.src_tensor_info | ||
= arm_compute::TensorInfo(arm_compute::TensorShape(K(), M()), 1, | ||
acl_utils::get_acl_data_t(src_d.data_type(), true), | ||
arm_compute::QuantizationInfo(1.0, 0, true)); | ||
almc_.src_tensor_info.set_are_values_constant(false); | ||
almc_.wei_tensor_info | ||
= arm_compute::TensorInfo(arm_compute::TensorShape(N(), K()), 1, | ||
acl_utils::get_acl_data_t(wei_d.data_type(), true), | ||
arm_compute::QuantizationInfo(1.0, 0, true)); | ||
almc_.wei_tensor_info.set_are_values_constant(false); | ||
almc_.dst_tensor_info | ||
= arm_compute::TensorInfo(arm_compute::TensorShape(N(), M()), 1, | ||
acl_utils::get_acl_data_t(dst_d.data_type(), true), | ||
arm_compute::QuantizationInfo(1.0, 0, true)); | ||
almc_.bia_tensor_info = arm_compute::TensorInfo( | ||
arm_compute::TensorShape(), 1, arm_compute::DataType::S32); | ||
almc_.with_bias = bia_d.format_kind() != format_kind::undef; | ||
if (almc_.with_bias) { | ||
// This is not currently guarded in ACL | ||
VDISPATCH_MATMUL(bia_d.ndims() == 2 && bia_d.dims()[0] == 1 | ||
&& bia_d.dims()[1] == N(), | ||
"Only 1xN bias is supported"); | ||
almc_.bia_tensor_info.set_tensor_shape( | ||
arm_compute::TensorShape(bia_d.dims()[1], bia_d.dims()[0])); | ||
} | ||
arm_compute::GEMMLowpOutputStageInfo info; | ||
info.type = arm_compute::GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT; | ||
info.gemmlowp_multiplier = 1073741824; | ||
info.gemmlowp_shift = -1; | ||
info.gemmlowp_offset = 0; | ||
info.gemmlowp_min_bound = -128; | ||
info.gemmlowp_max_bound = 127; | ||
info.output_data_type = almc_.dst_tensor_info.data_type(); | ||
almc_.gemm_info.set_gemmlowp_output_stage(info); | ||
auto scratchpad = scratchpad_registry().registrar(); | ||
const dnnl::impl::memory_desc_t dst_md_ {desc_.dst_desc}; | ||
arm_compute::ActivationLayerInfo act_info; | ||
CHECK(init_scratchpad(engine, scratchpad, acl_post_ops, attr_.post_ops_, | ||
act_info, dst_md_)); | ||
almc_.gemm_info.set_activation_info(act_info); | ||
ACL_CHECK_VALID(arm_compute::NEGEMMLowpMatrixMultiplyCore::validate( | ||
&almc_.src_tensor_info, &almc_.wei_tensor_info, | ||
almc_.with_bias ? &almc_.bia_tensor_info : nullptr, | ||
&almc_.dst_tensor_info, almc_.gemm_info)); | ||
return status::success; | ||
} | ||
status_t acl_lowp_matmul_sq_t::pd_t::init_scratchpad(engine_t *engine, | ||
memory_tracking::registrar_t &scratchpad, acl_post_ops_t &post_ops, | ||
dnnl::impl::post_ops_t &attr_post_ops, | ||
arm_compute::ActivationLayerInfo &act_info, | ||
const dnnl::impl::memory_desc_t &dst_md) { | ||
CHECK(post_ops.init(engine, attr_post_ops, dst_md, act_info)); | ||
// ACL only accepts s32 bias for quantization and since | ||
// the current bias vector is f32 we need to convert. | ||
if (almc_.with_bias) { | ||
const memory_desc_wrapper bias_d(&bias_md_); | ||
scratchpad.book(memory_tracking::names::key_conv_bias_s32_convert, | ||
bias_d.nelems(), bias_d.data_type_size()); | ||
} | ||
return status::success; | ||
} | ||
status_t acl_lowp_matmul_sq_t::create_resource( | ||
engine_t *engine, resource_mapper_t &mapper) const { | ||
if (mapper.has_resource(this)) return status::success; | ||
auto r = utils::make_unique<acl_lowp_matmul_sq_resource_t>(); | ||
if (!r) return status::out_of_memory; | ||
CHECK(r->configure(pd()->almc_)); | ||
mapper.add(this, std::move(r)); | ||
return status::success; | ||
} | ||
status_t acl_lowp_matmul_sq_t::execute(const exec_ctx_t &ctx) const { | ||
std::lock_guard<std::mutex> _lock {this->mtx_}; | ||
bool with_bias = pd()->almc_.with_bias; | ||
acl_lowp_matmul_sq_obj_t &acl_obj | ||
= ctx.get_resource_mapper() | ||
->get<acl_lowp_matmul_sq_resource_t>(this) | ||
->get_acl_obj(); | ||
auto src = CTX_IN_MEM(const int8_t *, DNNL_ARG_SRC); | ||
auto wei = CTX_IN_MEM(const int8_t *, DNNL_ARG_WEIGHTS); | ||
auto dst = CTX_OUT_MEM(const int8_t *, DNNL_ARG_DST); | ||
acl_obj.src_tensor.allocator()->import_memory(const_cast<int8_t *>(src)); | ||
acl_obj.wei_tensor.allocator()->import_memory(const_cast<int8_t *>(wei)); | ||
acl_obj.dst_tensor.allocator()->import_memory(const_cast<int8_t *>(dst)); | ||
DEFINE_ARG_SCALES_BUFFER(src_scale, DNNL_ARG_SRC); | ||
DEFINE_ZERO_POINT_VALUE(src_zero_point, DNNL_ARG_SRC); | ||
DEFINE_ARG_SCALES_BUFFER(wei_scale, DNNL_ARG_WEIGHTS); | ||
DEFINE_ZERO_POINT_VALUE(wei_zero_point, DNNL_ARG_WEIGHTS); | ||
DEFINE_ARG_SCALES_BUFFER(dst_scale, DNNL_ARG_DST); | ||
DEFINE_ZERO_POINT_VALUE(dst_zero_point, DNNL_ARG_DST); | ||
if (with_bias) { | ||
const auto scratchpad = ctx.get_scratchpad_grantor(); | ||
auto bia_s32_base = scratchpad.get<uint32_t>( | ||
memory_tracking::names::key_conv_bias_s32_convert); | ||
auto bia_f32_base = CTX_IN_MEM(const float32_t *, DNNL_ARG_BIAS); | ||
const float bias_scale = 1 / (*src_scale * (*wei_scale)); | ||
const int num_elements | ||
= acl_obj.bia_tensor.info()->total_size() / sizeof(float32_t); | ||
parallel_nd(num_elements, [&](dim_t e) { | ||
const auto b = int32_t(std::round(bia_f32_base[e] * bias_scale)); | ||
bia_s32_base[e] = b; | ||
}); | ||
acl_obj.bia_tensor.allocator()->init(*acl_obj.bia_tensor.info()); | ||
acl_obj.bia_tensor.allocator()->import_memory(bia_s32_base); | ||
} | ||
acl_obj.src_tensor.info()->set_quantization_info( | ||
arm_compute::QuantizationInfo(*src_scale, -src_zero_point, true)); | ||
acl_obj.wei_tensor.info()->set_quantization_info( | ||
arm_compute::QuantizationInfo(*wei_scale, -wei_zero_point, true)); | ||
// for efficiency reasons, OneDNN saves the inverse of the destination | ||
acl_obj.dst_tensor.info()->set_quantization_info( | ||
arm_compute::QuantizationInfo( | ||
1.0 / (*dst_scale), dst_zero_point, true)); | ||
// The two calls below are stateful and, therefore, not fully thread-safe. | ||
// This issue is being addressed, and the lock will be removed when the | ||
// matmul stateless work is finished. | ||
acl_obj.gemm.update_quantization_parameters(); | ||
acl_obj.gemm.run(); | ||
// free() here tells ACL it can no longer use it, it does not deallocate | ||
acl_obj.src_tensor.allocator()->free(); | ||
acl_obj.wei_tensor.allocator()->free(); | ||
if (with_bias) { acl_obj.bia_tensor.allocator()->free(); } | ||
acl_obj.dst_tensor.allocator()->free(); | ||
return status::success; | ||
}; | ||
} // namespace matmul | ||
} // namespace aarch64 | ||
} // namespace cpu | ||
} // namespace impl | ||
} // namespace dnnl |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
/******************************************************************************* | ||
* Copyright 2025 Arm Ltd. and affiliates | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*******************************************************************************/ | ||
|
||
#ifndef ACL_LOWP_MATMUL_SQ_HPP | ||
#define ACL_LOWP_MATMUL_SQ_HPP | ||
|
||
#include <random> | ||
|
||
#include "cpu/cpu_primitive.hpp" | ||
#include "cpu/matmul/cpu_matmul_pd.hpp" | ||
#include "cpu/matmul/matmul_utils.hpp" | ||
|
||
#include "cpu/aarch64/acl_post_ops.hpp" | ||
|
||
namespace dnnl { | ||
namespace impl { | ||
namespace cpu { | ||
namespace aarch64 { | ||
namespace matmul { | ||
|
||
struct acl_lowp_matmul_sq_obj_t { | ||
arm_compute::GEMMLowpOutputStageInfo info; | ||
arm_compute::NEGEMMLowpMatrixMultiplyCore gemm; | ||
arm_compute::Tensor src_tensor; | ||
arm_compute::Tensor wei_tensor; | ||
arm_compute::Tensor bia_tensor; | ||
arm_compute::Tensor dst_tensor; | ||
}; | ||
|
||
struct acl_lowp_matmul_sq_conf_t { | ||
bool with_bias; | ||
arm_compute::TensorInfo src_tensor_info; | ||
arm_compute::TensorInfo wei_tensor_info; | ||
arm_compute::TensorInfo bia_tensor_info; | ||
arm_compute::TensorInfo dst_tensor_info; | ||
arm_compute::GEMMInfo gemm_info; | ||
}; | ||
|
||
struct acl_lowp_matmul_sq_resource_t : public resource_t { | ||
acl_lowp_matmul_sq_resource_t() | ||
: acl_obj_(utils::make_unique<acl_lowp_matmul_sq_obj_t>()) {} | ||
|
||
status_t configure(const acl_lowp_matmul_sq_conf_t &almc); | ||
|
||
acl_lowp_matmul_sq_obj_t &get_acl_obj() const { return *acl_obj_; } | ||
|
||
DNNL_DISALLOW_COPY_AND_ASSIGN(acl_lowp_matmul_sq_resource_t); | ||
|
||
private: | ||
std::unique_ptr<acl_lowp_matmul_sq_obj_t> acl_obj_; | ||
}; | ||
|
||
struct acl_lowp_matmul_sq_t : public primitive_t { | ||
struct pd_t : public dnnl::impl::cpu::matmul::cpu_matmul_pd_t { | ||
|
||
using cpu_matmul_pd_t::cpu_matmul_pd_t; | ||
|
||
DECLARE_COMMON_PD_T("lowp_gemm_sq:acl", acl_lowp_matmul_sq_t, | ||
USE_GLOBAL_SCRATCHPAD); | ||
|
||
status_t init(engine_t *engine); | ||
|
||
status_t init_scratchpad(engine_t *engine, | ||
memory_tracking::registrar_t &scratchpad, | ||
acl_post_ops_t &post_ops, dnnl::impl::post_ops_t &attr_post_ops, | ||
arm_compute::ActivationLayerInfo &act_info, | ||
const dnnl::impl::memory_desc_t &dst_md); | ||
|
||
acl_lowp_matmul_sq_conf_t almc_; | ||
acl_post_ops_t acl_post_ops; | ||
}; | ||
|
||
acl_lowp_matmul_sq_t(const pd_t *apd) : primitive_t(apd) {} | ||
|
||
status_t create_resource(engine_t *engine, resource_mapper_t &mapper) const; | ||
|
||
status_t execute(const exec_ctx_t &ctx) const; | ||
|
||
private: | ||
mutable std::mutex mtx_; | ||
const pd_t *pd() const { return (const pd_t *)primitive_t::pd().get(); } | ||
}; | ||
|
||
} // namespace matmul | ||
} // namespace aarch64 | ||
} // namespace cpu | ||
} // namespace impl | ||
} // namespace dnnl | ||
|
||
#endif // CPU_AARCH64_ACL_LOWP_MATMUL_HPP |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters